

(Abstract)

Scheme and Syllabus of B.Sc. Biochemistry - Programme in tune with KU-FYUGP Regulations 2024 with effect from 2024 Admission onwards- Approved- Subject to ratification by the Academic Council- Implemented- Orders Issued.

FYUGP Spl.cell

ACAD/FYSC-III/16790/2024

Dated: 17.08.2024

Read:-1. U.O. No. FYUGPSC/FYSC-I/5074/2024, dated: 18/04/2024

- 2. The FYUGP Syllabus in B.Sc. Biochemistry submitted by Chairperson, Board of Studies in Biochemistry & Bioinformatics on 21.05.2024
- 3. E-mail from the Dean, Faculty of Science dtd 20.06.2024
- 4. The Orders of the Vice Chancellor dated 24.06.2024
- 5. The Minutes of the Meeting of the Academic Council, held on 25.06.2024

ORDER

- 1. The Regulations of the Kannur University Four Year UG Programmes (KU-FYUGP Regulations 2024) for affiliated Colleges was implemented with effect from 2024 admission onwards, vide paper read as (1) above.
- 2. Subsequently, the Chairperson, Board of Studies in Biochemistry & Bioinformatics vide paper read as (2) above, submitted the Scheme and Syllabus of the B.Sc. Biochemistry programme in tune with KUFYUGP Regulations 2024 with effect from 2024 admission onwards.
- 3. Thereafter, the Dean, Faculty of Science vide paper read as (3) above, scrutinized the FYUGP Syllabus of B.Sc. Biochemistry Programme.
- 4. Considering the urgency, the Vice Chancellor ordered to place the Syllabus before the Academic Council for consideration, as per read (4) above.
- 5. Thereafter, the Scheme and Syllabus of B.Sc. Biochemistry programme in tune with KU-FYUGP Regulations 2024 was approved by the meeting of the Academic Council held on 25-06-2024 and granted permission to publish the same, as and when it is ready, after making the necessary modifications, as per read (5) above.
- 6. Considering the matter in detail, the Vice Chancellor approved the Minutes of the aforesaid meeting of the Academic Council and the Scheme and the Syllabus of the B.Sc. Biochemistry programme, in tune with KU-FYUGP Regulations 2024 is approved.
- 7. The approved syllabus is appended with this University Order.

Orders are issued accordingly.

Sd/-

ANIL CHANDRAN R
DEPUTY REGISTRAR (ACADEMIC)

For REGISTRAR

To: The Principals of Arts and Science Colleges

Copy To: 1. The Examination Branch (through PA to CE)

,

2. The Chairperson, Board of Studies in Biochemistry & Bioinformatics.

- 3. PS to VC/PA to R
- 4. DR/AR (Academic)
- 5. The Web Manager(For uploading in the website)
- 6. SF/DF/FC

Forwarded / By Order

SECTION OFFICER

(Abstract)

FYUGP -Biochemistry Programme- Modified by adding a Discipline Specific Minor course to the Second semester syllabus- w.e.f. 2024 admission- Approved- Implemented - Orders Issued

ACADEMIC C SECTION

ACAD C/ACAD C3/21640/2024

Dated: 05.02.2025

Read:-1. U.O. No. ACAD/FYSC-III/16790/2024 dated 17/08/2024

- 2. E-mail dated. 12/11/2024 from the Chairperson, Board of Studies in Biochemistry
- & Bioinformatics
- 3. The Approved Minutes of the meeting of the Academic Council dated 21/12/2024

ORDER

- 1.The Scheme & Syllabus (all Semesters) of Biochemistry (FYUGP) Programme was approved and implemented in the Affiliated Colleges w.e.f. 2024 admission vide paper read (1) above.
- 2. As per paper read (2) above, the Chairperson, Board of Studies in Biochemistry & Bioinformatics forwarded the Minutes of the Meeting of the Board of Studies in Biochemistry & Bioinformatics held online on 08/11/2024, recommending to add a Discipline Specific Minor Course, *KU2DSCBCH107: Biochemistry of Biological Molecules*, in the second semester FYUGP Syllabus of the Biochemistry Programme.
- 3. Subsequently, the Chairperson forwarded the Syllabus of Biochemistry (FYUGP) Programme by incorporating these newly added Minor Course, for approval.
- 4. Considering the matter, the Vice Chancellor ordered to place the Syllabus of FYUGP Biochemistry Programme, submitted by the Chairperson, modified by including a Discipline Specific Minor Course in the second Semester, before the Academic Council for approval.
- 5. The Meeting of the Academic Council held on 21.12.2024 vide paper read (3) above, approved the modified Scheme & Syllabus of the Biochemistry (FYUGP) programme.
- 6. The Minutes of the Academic Council was approved by the Vice Chancellor.
- 7. Therefore, the Modified Scheme & Syllabus of the Biochemistry (FYUGP) Programme, after incorporating a Discipline Specific Minor Course in the II Semester and implemented in the Affiliated Colleges w.e.f. 2024 admission are appended with this U.O. and uploaded in the official website of the University.

Sd/-

ANIL CHANDRAN R DEPUTY REGISTRAR (ACADEMIC)

For REGISTRAR

To:

- 1. The Principals of Affiliated colleges
- 2. The Chairperson, Board of Studies in Biochemistry & Bioinformatics

Copy To: 1. PA to CE (to circulate the same among the sections concerned under Examination Branch)

- 2. PS to VC/PA to R
- 2. PS to VC/PA to R
- 3. JR II (Exam)
- 4. DR/AR (Academic)
- 5. Web manager (to uploading on the website)
- 6. Computer Programmer
- 7. SF/DF/FC

Forwarded / By Order

SECTION OFFICER

8

KANNUR UNIVERSITY

BOARD OF STUDIES IN BIOCHEMISTRY AND BIOINFORMATICS (UG)

SYLLABUS FOR FOUR YEAR UG PROGRAM (FYUGP) IN BIOCHEMISTRY BIOCHEMISTRY HONOURS AND BIOCHEMISTRY HONOURS WITH RESEARCH

(2024 ADMISSION ONWARDS)

KANNUR UNIVERSITY

VISION AND MISSION

Vision:

To establish a teaching, residential and affiliating University and to provide equitable and just access to quality higher education involving the generation, dissemination and a critical application of knowledge with special focus on the development of higher education in Kasaragod and Kannur Revenue Districts and the Manandavady Taluk of Wayanad Revenue District.

Mission:

- ➤ To produce and disseminate new knowledge and to find novel avenues for application of such knowledge.
- ➤ To adopt critical pedagogic practices which uphold scientific temper, the uncompromised spirit of enquiry and the right to dissent.
- ➤ To uphold democratic, multicultural, secular, environmental and gender sensitive values as the foundational principles of higher education and to cater to the modern notions of equity, social justice and merit in all educational endeavours.
- > To affiliate colleges and other institutions of higher learning and to monitor academic ethical, administrative and infrastructural standards in such institutions.
- ➤ To build stronger community networks based on the values and principles of higher education and to ensure the region's intellectual integration with national vision and international standards.
- ➤ To associate with the local self-governing bodies and other statutory as well as nongovernmental organizations for continuing education and also for building public awareness on important social, cultural and other policy issues.

KANNUR UNIVERSITY PROGRAMME OUTCOMES (PO)

PO1. Critical Thinking:

- 1.1. Acquire the ability to apply the basic tenets of logic and science to thoughts, actions and interventions.
- 1.2. Develop the ability to chart out a progressive direction for actions and interventions by learning to recognize the presence of hegemonic ideology within certain dominant notions.
- 1.3 Develop self-critical abilities and also the ability to view positions, problems and social issues from plural perspectives.

PO 2. Effective Citizenship:

2.1. Learn to participate in nation building by adhering to the principles of sovereignty of the nation, socialism, secularism, democracy and the values that guide a republic.

- 2.2. Develop and practice gender sensitive attitudes, environmental awareness, empathetic social awareness about various kinds of marginalisation and the ability to understand and resist various kinds of discriminations.
- 2.3. Internalise certain highlights of the nation's and region's history. Especially of the freedom movement, the renaissance within native societies and the project of modernisation of the postcolonial society.

PO 3. Effective Communication:

- 3.1. Acquire the ability to speak, write, read and listen clearly in person and through electronic media in both English and in one Modern Indian Language
- 3.2. Learn to articulate, analyse, synthesise, and evaluate ideas and situations in a well-informed manner.
- 3.3. Generate hypotheses and articulate assent or dissent by employing both reason and creative thinking.

PO 4. Interdisciplinarity:

- 4.1. Perceive knowledge as an organic, comprehensive, interrelated and integrated faculty of the human mind.
- 4.2. Understand the issues of environmental contexts and sustainable development as a basic interdisciplinary concern of all disciplines.
- 4.3. Develop aesthetic, social, humanistic and artistic sensibilities for problem solving and evolving a comprehensive perspective

FYUG BIOCHEMISTRY PROGRAMME PROGRAMME SPECIFIC OUTCOMES (PSOS)

After successful completion of four-year degree program in Biochemistry a student should be able to:

- PSO 1 Understand the fundamental concepts, principles and processes underlying the academic field of Biochemistry, its different subfields (clinical, nutritional, molecular biology) and its linkages with related disciplinary areas/subjects;
- PSO 2 Demonstrate procedural knowledge that creates different types of professionals in the field of Biochemistry and related fields such as research, pharmaceuticals, Food industry, Clinical laboratories, Teaching, product quality, cosmetics industry, etc.
- PSO 3 Employ critical thinking and the scientific method to design, carry out, record and analyse the results of Biochemical experiments and get an awareness of the impact of Biochemistry on the Health and society.
- PSO 4 Understand safety of chemicals, transfer and measurement of chemical, preparation of solutions.

- PSO 5 Create an awareness of the impact of Biochemistry on the Health, society, and development outside the scientific community
- PSO 6 Prepare for professional careers or further education by gaining exposure to the various branches of life science and developing a foundation for specialized areas of interest.
- PSO 7. Collaborate effectively with peers in group projects and laboratory work, fostering teamwork and interpersonal skills.
- PSO 8. Gain proficiency in using modern technologies and software tools relevant to Life science, including computational biology software, laboratory instrumentation, and data analysis tools.

COURSESTRUCTUREFORFOURYEARUGPROGRAMME(FYUGP) BIOCHEMISTRY (2024 ADMISSION ONWARDS)

SEMESTER 1

No	Title	Hours/ week	Credit	CE	ESE	Total marks
1	AEC1 (English)	3	3	25	50	75
2	AEC2 (Additional Language)	3	3	25	50	75
3	MDC 1	3	3	25	50	75
4	DSC A1 (Major)	4	4	30	70	100
5	DSCB1 (Minor1)	4	4	30	70	100
6	DSCC1(Minor2)	4	4	30	70	100
	Total credits		21			

SEMESTER II

No	Title	Hours/week	Credit	CE	ESE	Total marks
1	AEC3 (English)	3	3	25	50	75
2	AEC4 (Additional Language)	3	3	25	50	75
3	MDC 2	3	3	25	50	75
4	DSCA2 (Major)	4	4	30	70	100
5	DSCB2 (Minor1)	4	4	30	70	100
6	DSCC2(Minor2)	4	4	30	70	100
	Total credits		21			

SEMESTER III

No	Title	Hours/w eek	Credit	CE	ESE	Total marks
1	MDC 3	3	3	25	50	75
2	VAC 1	3	3	25	50	75
3	DSC A 3 (Major)	4	4	30	70	100
4	DSC A 4 (Major)	4	4	30	70	100
5	DSCB 3 (Minor1)	4	4	30	70	100
6	DSCC3 (Minor2)	4	4	30	70	100
	Total credits		22			

SEMESTER IV

No	Title	Hours/w	Credit	CE	ESE	Total
		eek				marks
1	SEC1	3	3	25	50	75
2	VAC 2	3	3	25	50	75
3	VAC 3	3	3	25	50	75
4	DSCA5 (Major)	4	4	30	70	100
5	DSCA6 (Major)	4	4	30	70	100
6	DSCA7 (Major)	4	4	30	70	100
	Total credits		21			

SEMESTER V

No	Title	Hours/ week	Credit	CE	ESE	Total marks
1	SEC2	3	3	25	50	75
2	DSC A8(Major)	4	4	30	70	100
3	DSC A9(Major)	4	4	30	70	100
4	DSC A10 (Major)	4	4	30	70	100
5	DSE 1 (A11)	4	4	30	70	100
6	DSE 2 (A12)	4	4	30	70	100
	Total credits		23			

SEMESTER VI

No	Title	Hours/w eek	Credit	CE	ESE	Total marks
1	SEC3	3	3	25	50	75
2	DSC A13 (Major)	4	4	30	70	100
3	DSC A14 (Major)	4	4	30	70	100
4	DSC A15 (Major)	4	4	30	70	100
5	DSE3 (A16)	4	4	30	70	100
6	DSE4 (A17)	4	4	30	70	100
7	INTERNSHIP	2	2			
	Total credits		25			

EXIT WITH UG DEGREE/PROCEED TO FOURTH YEAR WITH 133 CREDITS

17 Major course 17x4 =68

6 minor course 6x4 = 24

13 foundation courses (AEC, SEC, VAC, MDC) 13x3 =39

1 Internship 2x1 =2

Total =133

SEMESTER VII

No	Title	Hours/ week	Credit	СЕ	ESE	Total marks
1	DSC A18 (Major)	4	4	30	70	100
2	DSC A19 (Major)	4	4	30	70	100
3	DSC A20 (Major)	4	4	30	70	100
4	DSC A21 (Major)	4	4	30	70	100
5	DSC A22 (Major)	4	4	30	70	100
	Total credits		20			

SEMESTER VIII

No	Title	Hours/w eek	Credit	CE	ESE	Total marks
1	DSC A23 (Major)	4	4	30	70	100
2	DSC A24 (Major)	4	4	30	70	100
3	DSC A25 (Major)	4	4	30	70	100
4	PROJECT		12	40	60	100
		<u> </u>	OR	•	•	<u>'</u>
1	DSE B4 (Minor)	4	4	30	70	100
2	DSE B5 (Minor)	4	4	30	70	100
3	DSE B6 (Minor)	4	4	30	70	100
4	PROJECT		12	40	60	100
			OR	•	•	
1	DSC A20 (Major)	4	4	30	70	100
2	DSC A21 (Major)	4	4	30	70	100
3	DSC A22 (Major)	4	4	30	70	100
4	DSE B4 (Minor)/	4	4	30	70	100
	MOOC I					
5	DSE B5(Minor)/ MOOC II	4	4	30	70	100
6	DSE B6(Minor)/ MOOC III	4	4	30	70	100

Mark Distribution for Discipline Specific Courses and Foundation Courses
The mark distribution for various courses of different credits can be distributed as follows.

Course	Credit		Mark		L		P		
	L	P	L	P	CCA	ESE	CCA	ESE	Total marks
	4	0	100	0	30	70	0	0	100
	3	1	75	25	25	50	10	15	100
4 Credit	2	2	50	50	15	35	20	30	100
	1	3	25	75	10	15	30	45	100
	0	4	0	100	0	0	40	60	100
	Credit		Mark		L		P		
	L	P	L	P	CCA	ESE	CCA	ESE	Total marks
	3	0	75	0	25	50	0	0	75
3 Credit	2	1	50	25	15	35	10	15	75
3 Cleuit	1	2	25	50	10	15	20	30	75
	0	3	0	75	0	0	30	45	75

KANNUR UNIVERSITY FYUGP -2024 ADMISSION ONWARDS MAJOR PATHWAY COURSES IN BIOCHEMISTRY PROGRAMME STRUCTURE

	Sem	Course Code	Name of the Course	CRE	DITS	
	ester			Theory	Practical	Total
	I	KU1 DSC BCH101	BIOMOLECULES	4	-	4
	I	KU 1 DSC BCH102 (MINOR)	FUNDAMENTALS OF BIOCHEMISTRY I	4	-	4
	I	KU1DSC BCH103 (MINOR)	BASIC ENDOCRINOLOGY	4	-	4
	II	KU 2 DSC BCH104	CELL BIOLOGY	4	-	4
	II	KU 2 DSC BCH105 (MINOR)	FUNDAMENTALS OF BIOCHEMISTRY II	4	-	4
	II	KU 2 DSC BCH106 (MINOR)	BASIC PLANT BIOCHEMISTRY	4	-	4
Foundation level 100-199	II	KU 2 DSC BCH107 (MINOR)	BIOCHEMISTRY OF BIOLOGICAL MOLECULES	4	-	4
	III	KU 3 DSCBCH 201	NUTRITIONAL BIOCHEMISTRY	3	1	4
	III	KU3DSC BCH 202	ENZYMOLOGY	3	1	4
	III	KU 3 DSC BCH 203 (MINOR)	FUNDAMENTALS OF BIOCHEMISTRY III	4	-	4
	III	KU 3DSC BCH 204 (MINOR)	BIOCHEMISTRY OF HEALTH & NUTRITION	3	1	4
Intermediate	IV	KU4DSC BCH 205	BIOPHYSICAL AND BIOCHEMICALTECHNIQUES	3	1	4
level 200-299	IV	KU 4DSC BCH206	CELLULAR BIOCHEMISTRY	3	1	4
	IV	KU 4DSC BCH207	MOLECULAR BIOLOGY	4	-	4
	V	KU 5 DSC BCH 301	IMMUNOLOGY	3	1	4
	V	KU 5DSC BCH 302	METABOLISM -I	4	-	4
	V	KU 5DSC BCH 303	CLINICAL BIOCHEMISTRY	3	1	4
	V	KU 5DSE BCH 301	HERBAL TECHNOLOGY	4	-	4
Higher level	V	KU 5DSE BCH 302	ECOLOGY	4	-	4
300-399	V	KU 5DSE BCH 303	MOLECULAR BASIS OF DISEASES	4	-	4

	VI	KU 6DSC BCH 304	METABOLISM -II	4	-	4
	VI	KU6DSC BCH 305	GENETICS	4	-	4
	VI	KU 6DSC BCH 306	ENDOCRINOLOGY	4	-	4
	VI	KU 6DSE BCH 304	PROTEOMICS AND NUTRACEUTICALS	4	-	4
	VI	KU 6DSE BCH 305	LIFE STYLE DISEASES	4	-	4
	VI	KU 6DSE BCH 306	BIOSAFETY AND BIOETHICS	4	-	4
	VI	KU 6DSC BCH 307	INTERNSHIP	-	-	2
	VII	KU 7DSC BCH 401	RESEARCH METHODOLOGY	4	-	4
	VII	KU 7DSC BCH 402	PHARMACEUTICAL CHEMISTRY	4	-	4
	VII	KU 7DSC BCH 403	PLANT BIOCHEMISTRY	3	1	4
	VII	KU 7DSC BCH 404	PHYSIOLOGICAL ASPECTS OF BIOCHEMISTRY	4	-	4
	VII	KU 7DSC BCH 405	CANCER BIOLOGY	4	-	4
	VIII	KU 8 DSCBCH 406	COMPUTATIONAL TECHNIQUES IN BIOCHEMISTRY	3	1	4
	VIII	KU 8DSC BCH 407	BIOSTATISTICS	4	-	4
	VIII	KU 8DSC BCH 408	INTELLECTUAL PROPERTY RIGHTS	4	-	4
	VIII	KU 8DSC BCH 409	PROJECT	12	-	12
	VIII	KU 8 DSE BCH 404	DEVELOPMENTAL BIOLOGY	4	-	4
	VIII	KU 8DSE BCH 405	STEM CELL AND REGENERATIVE BIOLOGY	4	-	4
	VIII	KU 8DSE BCH 406	ENVIRONMENTAL BIOCHEMISTRY	4	-	4
Capstone /	VIII	KU 8 DSE BCH 407	ONLINE /MOOC COURSE I	4	-	4
Advanced level	VIII	KU 8 DSE BCH408	ONLINE/MOOC COURSE II	4		4
400-499	VIII	KU 8 DSE BCH 409	ONLINE/MOOC COURSE III	4	-	4

In the VIII semester either 3 courses or a project for 12 credits can be chosen

GENERAL FOUNDATION COURSES: BIOCHEMISTRY

SKILL ENHANCEMENT COURSES (SEC)							
Semester	Course Code	Name of the course		Credits			
			Theory	Practical	Total		

IV	KU 4 SEC BCH 201	MEDICAL BIOCHEMISTRY	2	1	3
V	KU5 SEC BCH 202	FOOD ADULTERATION AND ANALYSISTECHIQUES	2	1	3
VI	KU 6 SEC BCH 301	BASIC BIOCHEMICAL TECHNIQUES	2	1	3

VALUE ADDED COURSES (VAC)						
Semester	Course code	Name of the course		Credits		
			Theory	Practical	Total	
III	KU 3 VAC BCH 201	HEALTH & NUTRITION	3	-	3	
IV	KU4 VAC BCH 202	MEDICINAL PLANTS	3	-	3	
IV	KU4 VAC BCH 301	FOOD SAFETY AND QUALITY CONTROL	3	-	3	

	MULTIDISCIPLINARY COURSES (MDC)						
Semester	Course code	Name of the course	Credits				
			Theory	Practical	Total		
I	KU 1 MDC BCH 101	BIOMOLECULES OF LIFE	3	-	3		
II	KU 2 MDC BCH 102	BASIC BIOCHEMISTRY	3	-	3		

D	DISCIPLINE SPECIFIC MINOR PATHWAY COURSES: BIOCHEMISTRY					
Semester	Course code	Name of the course	Cr	edits		
			Theory	Practical	Total	
I	KU 1 DSC BCH 102	FUNDAMENTALS OF	4	-	4	
		BIOCHEMISTRY I				
I	KU 1DSC BCH 103	BASIC ENDOCRINOLOGY	4	-	4	
II	KU 2 DSC BCH 105	FUNDAMENTALS OF	4	-	4	
		BIOCHEMISTRY II				
II	KU 2 DSC BCH 106	BASIC PLANT BIOCHEMISTRY				
II	KU 2 DSC BCH 107	BIOCHEMISTRY OF	4	-	4	
		BIOLOGICAL MOLECULES				
III	KU 3 DSC BCH 203	FUNDAMENTALS OF	4	-	4	
		BIOCHEMISTRY III				
III	KU 3 DSCBCH 204	BIOCHEMISTRY OF HEALTH &	3	1	4	
		NUTRITION				

I SEMESTER KU1DSC BCH 101: BIOMOLECULES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	Foundation	KU1DSC BCH 101	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description

Biochemistry is a study focusing on the life processes of living organisms at both biological and chemical levels. The branch focuses on studying organisms' cells, thereby understanding their structures and various interactions. Biomolecules are the most essential organic molecules, which are involved in the maintenance and metabolic processes of living organisms. Biomolecules have a wide range of sizes and structures and perform a vast array of functions. The four major types of biomolecules are carbohydrates, lipids, nucleic acids, and proteins.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning
		Domains
1	State the definition and branches of Biochemistry	
2	Understand functions of vitamins and minerals	
3	Understand the nature functions of biomolecules	

^{*}Remember ©, Understand (U), Apply (A), Analyse (An), Evaluate ©, Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		~		
CO 3			~	
CO 4				~

CO 5		>

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	INTROD	UCTION TO BIOCHEMISTRY	10
1	1	Definition-Branches of Biochemistry	
	2	Brief study of the foundations of biochemistry (cellular, chemical and physical foundations-fundamental study	
	3	only). Biochemistry as a molecular logic of living organism.	_
	4	Role and scope of Biochemistry.	
	CARBOI	HYDRATES ANDLIPIDS	15
	1	Definition and classification. Monosaccharides-, occurrence, chemistry& functions with reference to Glyceraldehyde.	
	2	Examples of epimers, anomers, mutarotation	
	3	Disaccharides- occurrence, and functions of sucrose, lactose, maltose, isomaltose and cellobiose.	
2	4	Polysaccharides: occurrence and functions of cellulose, starch, glycogen, Hyaluronic acid, chondroitin sulphate, heparin	
	5	Definition, classification, biochemical functions of lipids	-
	6	Classification of fatty acids: Essential and non-essential fatty acids with examples.	
	7	Physical and chemical properties of fatty Acids, saponification number, acid number, rancidity of fats and iodine number- their applications	
	AMINO A	ACIDS AND PROTEINS	15
3	1	Amino acids: Definition, structure three letter and single letter abbreviations of amino acids. Classification of amino acids based on charge and polarity, essential and non-essential amino acids.	
	2	Proteins: Peptides- Formation of peptide bond.	-
	3	Elementary study of primary, secondary, tertiary and quaternary structure of proteins- (eg. Haemoglobin and Myoglobin).	
	4	Forces stabilizing the structure of protein	

	5	Classification of proteins based on solubility, shape and	
		function	
	NUCLEIC	CACIDS	15
4	1	Nucleic acids: types, structural components of DNA & RNA.	
4	2	Nucleosides, nucleotides, Stability and formation of Phosphodiester linkages	
	3	Effect of acids, alkali and nucleases on DNA and RNA.	
5		Teacher Specific Module	5
3		Directions	_

Essential Readings:

- J L Jain Text book of biochemistry. Chand and company Ltd.NewDelhi 2007
 E.S.West, W.R. Todd etal., Text book of Biochemistry4th edition. Oxford and IBH Publishing. 1974.
- 3. Nelson, David L. (David Lee), 1942-. Lehninger Principles of Biochemistry. New York :W.H. Freeman, 2005.

Reference Distribution:

Module	Unit	Reference No.
	1	2
1	3	2 3 3 3
1		3
	4	3
	1	1
	2	2
	3 4	2
2	4	2 2
	5	3
	6	3
	7	3 3 3
	1	1
	2	1
	3	2
3	4	3
3	5	2 3 2 2 3 4
	6	2
	7	3
	8	4
	1	1
4	2	2 2 3
	3	2
	4	3

Suggested Readings:

- 1. Devlin, Thomas M. Textbook of biochemistry: with clinical correlations. 7th Hoboken: N.J.: Jwiley, 2011.
- 2. Berg, Jeremy M., John L. Tymoczko, and Lubert Stryer. Biochemistry. 5th ed., W. H freeman, 2002.

Assessment Rubrics:

I	Evaluation Type	Marks	
End Seme	ester Evaluation	70	
Continuo	us Evaluation	30	
a)	Test Paper	10	
b)	Assignment	5	
c)	Seminar	10	
d) Viva		5	
	Total	100	

Employability for the Course:

- 1. Research Scientist
- 2. Biochemist
- 3. Pharmaceutical Scientist
- 4. Clinical Biochemist

II SEMESTER KU2DSCBCH 104: CELL BIOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	Foundation	KU2DSC BCH 104	4	60

Learning Approach (Hours/ Week)			Marks Distribution					
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)		
4	0	0	30	70	100	2		

Course description:

Cellular Biochemistry course provides an in-depth exploration of fundamental concepts in cell biology and biochemistry, focusing on the structure, function and regulation of cellular components in both Eukaryotic and Prokaryotic organisms. Students will gain a comprehensive understanding of cell membrane dynamics, organelle structure and function, cell division processes and membrane transport mechanisms.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	To understand the structure of prokaryotic and eukaryotic cell. To know the cell organelles and locate its parts along with	Domains
	functions.	
2	In depth knowledge of cell membrane and its composition	
3	Aware of various transport system existing in Eukaryotes and	
	Prokaryotes	
4	Compare and contrast the events of cell cycle and its regulation	
5	To understand cancer development and its causes.	
	To analyse the difference between normal and cancerous cell.	

^{*}Remember ©, Understand (U), Apply (A), Analyse (An), Evaluate ©, Create (C)

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		~		
CO 3			~	
CO 4				~
CO 5				>

MODULE	UNIT	DESCRIPTION	HOURS	
1	CELL- STRUCTURAL ORGANIZATION AND FUNCTIONS OF INTRACELLULAR ORGANELLES			
	1	Discovery of cell and Cell Theory. Ultrastructure of cell: prokaryotic and eukaryotic cell		

2	Structure and Functions of Cell wall, mitochondria,
	chloroplast, ribosomes, endoplasmic reticulum, Golgi
	complex and lysosomes.
3	Structure and function of nucleus and nucleolus.
	Morphology of chromosomes
4	Cytoskeleton and organization- Microtubules,
	microfilaments and intermediary filaments.

	MEMBRA	NE STRUCTURE AND FUNCTIONS	15
	1	Membrane bilayer – Models, Plasma membrane- structure and composition -Fluid mosaic model.	
2	2	Membrane lipids – fluidity, Asymmetry phase transition, Liposomes.	
	3	Membrane proteins – Types, Orientation, Mobility – Experiments, lipases, proteins or RBC membrane, Bacteriorhodopsin, Porins-aquaporin, solubilisation of proteins, lipid anchored proteins.	
	4	Carbohydrates – cell surface carbohydrates – Lectins.	
	MEMBRA	NE TRANSPORT	15
3	1	Transport across membranes- Exocytosis, Endocytosis, Simple diffusion, facilitated transport- definition, types with examples. Symport, uniport and antiport	
3	2	Active transport- Primary active transport, secondary active transport, sodium/potassium-ATPase	
	3	GLUT types and mechanism, ion transporter	
	4	P- ATPase, V- ATPase, F- ATPase, ABC superfamily — Bacterial PM permeases	
	CELL DIV	VISION AND CELL CYCLE	15
4	1	Histone proteins and chromosomal organization	
	2	Cell Cycle: Different phases including cell division – mitosis & meiosis.	

	3	Outline study of apoptotic pathways, role of caspases proteins in apoptotic pathways, cell death receptor and apoptosis	
	4	Cancer – Development and causes of cancer, properties of malignant cells.	
5	Teacher Sp	ecific Module	5
	Directions		

Essential Readings:

- 1. Cooper, G.M. The Cell A Molecular Approach. Sunderland, MA, Sinauer Associates, Inc., 2013.
- 2. Karp, Gerald. Cell and Molecular Biology: Concepts and Experiments. 5th ed., Wiley, 2007.
- 3. Verma, P.S. Cell Biology (Cytology, Biomolecules and Molecular Biology). 1st ed., S Chand Publication, 2016.

Reference Distribution:

Module	Unit	Reference No.
	1	3
1	2	3
1	3	2
	4	2
2	1	3
	2	2
2	3	1
	4	6
	1	2
3	2	1
3	3	6
	4	4
	1	3
4	2	1
	3	2
	4	4

Core suggested and additional reading:

- 4. Lodish, Harvey, et al. Molecular Cell Biology. 7th ed., W. H. Freeman and Company, 2013.
- 5. Alberts, Bruce, et al. Molecular Biology of the Cell. 6th ed., Garland Publishing Inc., 2014.
- 6. Alberts, Bruce et al. Essential Cell Biology. 4th ed., Garland Press (Taylor & Francis), 2004.

Assessment Rubrics:

E	Evaluation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d) Viva		5
	Total	100

Employability for the course/Programme

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 4. Quality control analysis
- 5. Biotechnology Industry

III SEMESTER KU3DSCBCH201: NUTRITIONAL BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	Intermediate	KU3DSCBCH201	4	75

Learning	g Approach (Hou	Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
3	2	-	25	50	75	2	

Course Description:

Nutritional biochemistry courses focus on nutrients. Nutrients are chemical substances required by the body to sustain basic functions and are optimally obtained by eating a balanced diet. There are six major classes of nutrients essential for human health: carbohydrates, lipids, proteins, vitamins, minerals, and water. Carbohydrates, lipids, and proteins are considered macronutrients and serve as

a source of energy. Vitamins and minerals are considered micronutrients and play essential roles in metabolism. Vitamins are organic micronutrients classified as either water-soluble or fat-soluble. Minerals are inorganic micronutrients. Minerals can classify as macro minerals and microminerals.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of nutrition & health.	
2	Create knowledge of different types of carbohydrates, their importance, sources, functions.	
3	Analyse the nutritional aspects of proteins	
4	To understand the nutritional aspects of minerals and vitamins	
5	To create the knowledge about to identify what foods good sources of what nutrients.	

^{*}Remember ©, Understand (U), Apply (A), Analyse (An), Evaluate ©, Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2		>		
CO 3		>		
CO 4		~		
CO 5				>

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	BASICS	OF NUTRITION	15
	1	Concepts of macro and micro nutrients.	
1	2	Physiological fuel value and Respiratory quotient	
	3	High and low-calorie diets, Balanced diet	
	4	Recommended dietary allowance (RDA)Basal metabolic rate (BMR) and factors affecting BMR	

	NUTRIT AND LIP	IONAL ASPECTS OF THE CARBOHYDRATES PIDS	10
2	1	Nutritional aspects of the carbohydrates- (Different dietary types, source deficiency)	
	2	Special role of the non-starch polysaccharides.	
	3	Nutritional aspects of the lipids- Different dietary types	
	4	Functions of lipids, Essential fatty acids – sources and functions	
		IONAL SIGNIFICANCE OF PROTEINS, ALS AND VITAMINS	10
	1	Nutritional classification of amino acids and proteins, Essential amino acids – sources and functions	
3	2	Protein Energy Malnutrition-Kwashiorkor and Marasmus.	
	3	Dietary Macro elements: Ca, P, Mg, Na & K and Dietary Micro elements: Iron, Iodine, Zinc, Copper – sources, functions and deficiencies	
	4	Nutritional significance- fat soluble and water-soluble vitamins- source, functions and deficiency diseases.	
		NUTRITIONAL DISORDERS	10
4	1	Nutritional management of diabetes mellitus	
	2	Nutritional management of obesity	
	3	Nutrition for infants, children, pregnant and lactating women	
	4	Importance of nutrition under stress conditions.	
	5	Sports nutrition	
	Teacher S	Specific Module: Practical's	30
5	1	Estimation of total protein	
	2	Estimation of Vitamin C from fruit juice	

3	Estimation of calcium from milk	
4	Qualitative analysis of lipids	
5	Qualitative analysis of Casein	
6	Qualitative analysis of Albumin	
7	Qualitative analysis of Peptone	
8	Qualitative analysis of Carbohydrates-Glucose,	
	Fructose, Sucrose, Lactose, Maltose	
9	Qualitative analysis of amino acids-Tyrosine, Arginine, Tryptophan	

Essential Readings:

- 1. Akoh, Casimir C. Food Lipids: Chemistry, Nutrition, and Biotechnology. 4th ed., CRC Press Taylor & Francis Group, 2016.
- 2. Mann, Jim, and A. Stewart Truswell. Essentials of Human Nutrition. 2nd ed., Oxford University Press Inc., 2002.
- 3. Rodwell, Victor, et al. Harper's Illustrated Biochemistry. 31st ed., Tata McGrawHill Education, 2018.
- 4. Underwood, E. Trace Elements in Human and Animal Nutrition. 4th ed., Academic Press, 1977.
- 5. Bamji, M.S., Kamala Krishnaswami, and G.N.V. Brahmam. The Book of Human Nutrition. 4th ed., Oxford & IBH Publishing, 2011.
- 6. Swaminathan, M.S. Essentials of Food and Nutrition. Vol. I and II, Ganesh & Co., 1974.
- 7. Trueman, Patricia. Nutritional Biochemistry. Mjp Publishers, 2007.

Reference Distribution:

Module	Unit	Reference No.
	1	7
	2	7
1	3	2
	4	2
	1	3
2	2	6
<i>L</i>	3	5
	4	2
	1	2
3	2	2
	3	2

4	2
1	9
2	10
3	10
4	12
5	12
6	12
7	12
8	8
9	8
10	8
	1 2 3 4 5 6 7 8

Suggested Readings:

- 8. Mahan, L.K., and Raymond J. Shanahan. Krause's Food and Nutrition Care Process. 2012.
- 9. Raymond, J. Elsevier's Publications. ISBN- 978-1-4377-2233-8.
- 10. The vitamins, Fundamental aspects in Nutrition and Health (2008) 1 G.F.
- 11. Coombs Jr. Elsevier's Publications. ISBN-13- 978-0-12- 183493-7.
- 12. Gibson, Rosalind. Principles of Nutritional Assessment. University Press, 2005.

Assessment Rubrics:

E	Evaluation Type	Marks
End Sem	ester Evaluation	75
Continuous Evaluation		25
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d) Viva		5
Total		100

Employability for the Course:

- 1. Food industries
- 2. Research and Development
- 3. Teaching
- 4. Dietitians
- 5. Entrepreneurship

6. Food testing lab- technicians

KU3DSC BCH 202: ENZYMOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	Intermediate	KU3DSC BCH 202	4	75

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
3	2	0	25	75	100	2

Course Description:

This course is designed so that students have a deep knowledge of all aspects of enzymes. It emphasizes on the enzyme kinetics, the mechanisms of enzyme catalysis, and enzymatic regulation. It also aims to provide hands-on practical training with enzyme assay, factors affecting enzymes, and enzyme purification.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	This course is designed so that students have a deep knowledge of all aspects of enzymes.	
2	It emphasizes on the enzyme kinetics, the mechanisms of enzyme catalysis, and enzymatic regulation.	
3	To understand the various mechanisms enzyme regulation and to apply enzyme technology in various fields.	
4	It also aims to provide hands-on practical training with enzyme assay, factors affecting enzymes, and enzyme purification.	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1						>

CO 2			>
CO 3			>
CO 4			>

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
		INTRODUCTION TO ENZYMES	15
	1	Holoenzyme, apoenzyme, and prosthetic group; Interaction between enzyme and substrate- lock and key model, induced fit model, Features of active site, activation energy.	
1	2	Enzyme specificity and types; Enzyme Commission system of classification and nomenclature of enzymes (Class and subclass with one example)	
	3	Coenzymes and their functions - NAD, NADP ⁺ , FAD, FMN, lipoic acid, TPP, pyridoxal phosphate, biotin and cyanocobalamin.	
	4	Measurement and expression of enzyme activity, enzyme assays. Definition of IU, katals, enzyme turn over number and specific activity, Isolation of enzymes and the criteria of purity.	
		ENZYME KINETICS	10
		Study of the factors affecting the velocity of enzyme catalyzed reaction- enzyme concentration, temperature, pH, substrate concentration, inhibitors and activators (explanation with graphical representation).	
2		Derivation of Michaelis-Menten equation and Km value determination and its significance Definition of V_{max} value of enzyme and its significance, Lineweaver- Burkplot.	
		Bi-substrate reactions: Classification, Reaction mechanisms	

		Allosteric enzymes: Subunit Interactions, regulation of enzyme activity, Jacob and Monod model of allosteric enzymes, Koshl and model, detailed discussion using haemoglobin, ATCase (Effects of ATP and CTP) as examples. K-Class and V-Class allosteric enzymes	
	ENZYM ACTION	IE INHIBITION ANDMECHANISM OF ENZYME	10
	1	Mechanism and rate studies.	
3	2	Reversible and Irreversible enzyme inhibition; competitive, non-competitive, and uncompetitive inhibition.	
	3	Graphical analysis; primary and secondary kinetic plots.	
	4	Mechanism of enzyme action: General acid base catalysis, Covalent catalysis, Metal ion catalysis, Catalysis by approximation & orientation.	
		APPLICATION OF ENZYMES	10
	1	Enzyme engineering: Active site mapping.	
	2	Immobilized enzymes and its application in industry and medicine	
4	3	Industrial uses of enzymes: production of glucose from starch, cellulose and dextrans, use of lactase in diary industry, production of glucose fructose syrup from sucrose, use of proteases in food, leather and detergent industry	
	4	Diagnostic and therapeutic enzymes. Abzymes and Ribozyme	
	Teacher	Specific Module: Practicals	30
5	1	Effect of temperature on Salivary amylase enzyme activity.	
	2	Effect of pH on Salivary amylase enzyme activity.	

3	Effect of enzyme concentration on Salivary amylase enzyme activity.	
4	Effect of substrate concentration on Salivary amylase enzyme activity.	
5	Effect of time on Salivary amylase enzyme activity.	
6	Determination of Michaelis-Menten constant (KM) of an enzyme by Lineweaver-Burk method.	
7	Purification of amylase from plant source.	

Essential Readings:

- 1. Palmer, Trevor, and Philip Bonner. Enzymes: Biochemistry, Biotechnology, Clinical Chemistry. Horwood Publishing Limited, 2007.
- 2. Price, Nicholas C., and Lewis Stevens. Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins. Oxford University Press, USA, 1999
- 3. Jain, J.L., Sunjay Jain, and Nitin Jain. Fundamentals of Biochemistry. S. Chand & Co Ltd, 2008.
- 4. West, E.S., et al. Textbook of Biochemistry. Oxford & IBH Publishing Co-Pvt. Ltd., 2017.
- 5. 5.Laidler, K.J., and P.S. Bunting. The Chemical Kinetics of Enzyme Action. Oxford University Press, London, 1987.
- 6. Voet, Donald, and Judith G. Voet. Fundamentals of Biochemistry. 4th ed., Wiley, 2006.
- 7. Sawhney, S. K., and Randhir Singh. Introductory Practical Biochemistry. Narosa Publishing House, 2010.

Reference Distribution:

Module	Unit	Reference No.
	1	3
1	2	2
1	3	1
	4	6
	1	5
2	2	1
2	3	1
	4	6

	1	6
3	2	4
	3	1
	4	1
	1	7
	2	7
	3	7
	4	7
4	5	7
_	6	7
	7	7
	8	7
	9	7
	10	7

Suggested Readings:

- $1. \ \ Palmer, T. \ Understanding \ Enzymes. \ 4^{th} \ ed., Prentice \ Hall/Ellis \ Horwood, \ London, \ 1995.$
- 2. Price, Nicholas C., and Lervis Stevens. Fundamentals of Enzymology. 2nd ed., Oxford Science Publications, New York, 2001.
- 3. Bugg, T. D. H. Introduction to Enzyme and Coenzyme Chemistry. 3rd ed., John Wiley & Sons Ltd., Chichester, UK, 2012.
- 4. Buchholz, Klaus, Volker Kasche, and Urve Theo Bornscheuer. Biocatalysts and Enzyme Technology. John Wiley & Sons, 2012.

Assessment Rubrics:

Evaluation Type	Marks
End Semester Evaluation (Theory)	75
End Semester Evaluation (Practical)	25

Con	inuous Evaluation (Theory)	10
a)	Test Paper	5
b)	Assignment	2
c)	Seminar	3
	Total	100

Employability for the course/programme:

- 1. Academic Researcher.
- 2. Scientific Laboratory Technician.
- 3. Medical Researcher.
- 4. Enzymologist in Drug designing

IV SEMESTER KU4DSCBCH 205: BIOPHYSICALANDBIOCHEMICAL TECHNIQUES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	DSC	Intermediate	KU4DSCBCH205	4	75

Learnin	g Approach (H	ours/Week)	Ma	rks Distributi	ion	· Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3	2	0	25	75	100	2

Course Description:

The biochemical & biophysical techniques encompass a range of processes, including Protein Purification, perfusion, Homogenization, Differential Centrifugation, Purification of LDH, Characterization of LDH, Western blotting, Gel filtration chromatography, Protein crystallography, PCR, Ligation and transformation and Selection and screening.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Toexplaintheprincipleandfunctionofvariousinstrumentsinbiochemistry	
2	To interpret about working methods of various types of Microscope.	
3	To understand different type of separation techniques.	
4	To analyse detailed working and applications of chromatography and electrophoresis	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~	~		
CO 2	~			
CO 3		~		
CO 4			~	~

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	MICROS	SCOPIC AND CENTRIFUGAL TECHNIQUES	10
	1	Microscopy-Basic principle and applications	
1		Types: light, compound, phase contrast, darkfield, electron microscopy: transmission (TEM) and scanning electron microscopy, Cryoelectron microscopy, fluorescent microscopy	
	3	Centrifugation-Principle and Components	
	4	Sedimentation Techniques-Differential, density gradient	

		and ultra-centrifugation	
	ELECT	ROPHORETICANDCHROMATOGRAPHICTECHN	15
	1	Electrophoresis-Theory and Principle	
2	2	Electrophoretic techniques-Paper, Agarosegel, SDS-PAGE, immune electrophoresis, isoelectric focusing, Density gradient gel electrophoresis (DGGE), Gel documenter	
	3	Chromatography-Principle and types: Paper, TLC, ion exchange, gel filtration, affinity, GLC and HPLC	
	SPECTO	OSCOPICTECHNIQUES	10
	1	Spectroscopy-Laws of light absorption –Beer lamberts law	
3	2	UV and visible spectroscopy: Working and application of UV and visible spectroscopic techniques	
	3	Principle and application of NMR, IR spectroscopy, mass spectroscopy, fluorescent and emission spectroscopy, MALDI-TOF, Raman spectroscopy, Laser spectroscopy, X-ray crystallography	
	RADIO	ISOTOPES IN BIOLOGY	10
4	1.	Radioisotopes used in biology-P ³² , I ¹²⁵ , I ¹³¹ , Co ⁶⁰ ,C ¹⁴	
	2.	Radiation hazards, Precautions.	
	3.	Measurement of radioactivity by GM Counter and Scintillation counter	
	Teacher	Specific Module: Practical's	30
	1	Standardization of pH meter	
	2	Measurements of pH of solutions using pH meters	
5	3	Principles of colorimetry and verification of Beer- Lambert law.	
	4	Separation of pigments by column chromatography	
	5	Separation of amino acids and sugar by TLC	

6	Agarose gel electrophoresis of DNA	
7	Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis of proteins.	
8	Extraction of enzymes from animal tissues and isoenzyme analysis by PAGE.	

Essential Readings:

- 1. Banerjee, Pranab Kumar. Introduction to Biophysics. S. Chand & Company, 2008.
- 2. Roy, R.N. A Textbook of Biophysics. New Central Book Agency Pvt. Ltd, Calcutta, 2001.
- 3. Upadhyay, Upadhyay, and Nath. Biophysical Chemistry. Himalaya Publishing House, Bangalore, 2016.
- 4. Allen, James P. Biophysical Chemistry. Wiley Blackwell, 2008.
- 5. Wilson, K., and Walker, J. Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University Press, 2010.

Reference Distribution:

Module	Unit	Reference No.
	1	5
1	3	5
1	3	1
	4	3
	1	3
2	2	1
	3	4
	1	5
3	2	5
	3	5
	1	11
	2	10
	3	10
4	4	9
	5	9
	6	9
	7	9

Suggested Readings:

- 1. Horst, F. (2010) Basic One and Two-dimensional NMRS pectroscopy, Wiley-VCH. New Jersey.
- 2. Ir'lurphy. D.B. and Davidson. M. (2012) Fundamentals of Light Microscopy and Electron Imaging-Wild -Blackuell.NewJersey
- 3. Freielder.D.M.(1983) Physical Biochemistry'-Application to Biochemistry and Molecular Biology. Vol 1. Freeman. New York
- 4. Sambrook and Russel (2000). *Molecular Cloning Vol 1-3* (3rd edition)- CSHL press.

- 5. S. Sadasivam, A. Manickam (2010) Biochemical methods 3rd edition.
- 6. Practical Biochemistry Plummer

Assessment Rubrics:

Evaluation	on Type	Marks	
End Sen	nester Evaluation	75	
(Theory)		13	
End Sem	ester Evaluation	25	
(Practical			
Continuo	us Evaluation (Theory)	10	
a)	Test Paper	5	
b) Assignment		2	
c) Seminar		3	
Total		100	

Employability for the Course:

- 1. Biochemical companies
- **2.** Research and development
- **3.** Teaching
- **4.** Quality control analysis
- 5. Microbial, Biotechnology and Pharmaceutical Industry

KU4DSCBCH 206: CELLULAR BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	DSC	Intermediate	KU 4 DSC BCH 206	4	75

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
3	2	0	25	75	100	2

Course Description:

The focus of Cell Biology is the study of the structure and function of the cell. In this course we will focus on Eukaryotic cell biology and will cover topics such as cell cycle regulation, signal transduction, apoptosis (programmed cell death), and cancer cell biology. Throughout the semester

we will attempt to relate defects in these various cellular processes and helps to gain a better understanding for what happens when cells don't work as they should.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand the regulation of cell cycle	
	And to familiarize the interactions between the cells	
2	Understand signalling molecules and their mechanism of action	
3	About cell death and make students aware of cancer	
4	To practically analyse the different cell biology techniques	
5	Teacher specific	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	Mapping of Course Outcomes to PSOs						
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	~			~			
CO 2		*			~		
CO 3			>				~
CO 4			*			~	
CO 5	~			*			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	CELL	CYCLE REGULATION AND CELLULAR INTERACTIONS	15
1	1	Phases of eukaryotic cell cycle and their regulations, cyclins and cyclin dependent kinases.	
	2	Growth factors, nuclear Lamins in cell cycle regulation. Checkpoints in cell cycle regulation	

	3 Cell- cell interaction and cell matrix interaction, extracellular matrix- collagens, proteoglycan, fibronectin. Cell-cell adhesion and adhesion proteins- cadherin, Ig superfamily, selectin, integrin, mucin. 4 Cell junctions – occluding, communicating, anchoring	
	4 Cell junctions – occluding, communicating, anchoring junctions.	
	CELL SIGNALLING	15
	Signalling molecules- Nitric oxide, neurotransmitters, peptide hormones, growth factors, eicosanoids, second messengers.	
2	2 Cell surface receptors - GPCR, receptor protein tyrosine kinases, cytokine receptors	
	3 Intracellular signalling pathways- cyclic AMP pathways, phospholipase C pathway	
	4 JAK/STAT pathway, Wnt signalling	
	APOPTOSIS AND CANCER	15
	1 Outling study of apontatic restaurants	
	1 Outline study of apoptotic pathways	
3	2 Role of caspases proteins in apoptotic pathways,	
	3 Cell death receptor and apoptosis	
	4 Development and causes of cancer, properties of malignant cells.	
	PROTEIN TARGETTING	15
	Protein targeting/sorting - definition, types - signal based targeting, vesicle-based trafficking. Overview of major sorting pathways in eukaryotes	
4	Protein modifications in ER - covalent addition and processing of carbohydrates (glycosylation) in the ER and Golgi complex, formation of disulfide bonds in the ER.	
	3 Brief outline of Mechanism for nuclear import and export of proteins, NLS signal	
	4 Targeting of Peroxisomal Proteins- PTS1-directed import of peroxisomal matrix proteins	
	Teacher Specific Module: Practicals	30
	1 Microscope and different types of microscopes	
5	2 Counting yeast cells using haemocytometer	
	3 Study of mitosis in onion root tip	

4	Study of meiosis using permanent slides	
5	Cell fractionation	

- 1. Lodish, H., Parnell, J., & Kaiser, C. A. Molecular Cell Biology. WH Freeman and Company, New York and London.
- 2. Cooper, G. M., & Hausman, R. The Cell: A Molecular Approach. Sinauer Associates, Sunderland, MA.
- 3. Pollard, Thomas D., & Earnshaw, William C. Cell Biology. Saunders Elsevier, Philadelphia, 2008.
- 4. Verma, P. S., & Agarwal, V. K. Cell Biology, Genetics, Molecular Biology, Evolution, and Ecology. S. Chand & Company Ltd, New Delhi, 2008.
- 5. Weinberg, Robert A. The Biology of Cancer. Garland Science, 2007.
- 6. Celis, Julio E. Cell Biology: A Laboratory Handbook. Elsevier Inc., 2006.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	1
1	3	4
	4	4
	1	1
	2	1
2	3	1
	4	1
	1	3
	2	3
3	3	5
	4	5
	1	6
4	2	6
4	3	6
	4	6
	5	6

Suggested Readings:

- 7. Bruce, A. Molecular Biology of the Cell. Garland Publishing, 1989. .
- 8. Karp, G. Cell and Molecular Biology: Concepts and Experiments. 5th ed., John Wiley & Sons, Inc., 2008.

Assessment Rubrics:

Evaluati	ion Type	Marks
End Sen	nester Evaluation (Theory)	75
End Sem	nester Evaluation (Practical)	25
Continuo	ous Evaluation (Theory)	10
a)	Test Paper	5
b)	Assignment	2
c)	Seminar	3
Total		100

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 5. Biotechnology Industry

IV SEMESTER KU4DSCBCH 207: MOLECULAR BIOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	DSC	Intermediate	KU4DSC BCH 207	4	60

Learning	Approach (Hou	ch (Hours/ Week) Marks Distribution				
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4	0	0	30	70	100	2

Course Description:

The Molecular Biology course places a strong emphasis on comprehending the structure and functionalities of crucial macromolecules, equipping students with both theoretical insights and hands-on laboratory competencies. Through detailed exploration, students uncover the intricate mechanisms that regulate cell function, spanning DNA, RNA, and proteins, and examine their interconnections across the domains of biochemistry, genetics, and cell biology. Importantly, the course highlights the revolutionary influence of recent breakthroughs in Molecular Biology, exemplified by the culmination of various large-scale genome projects, which are fundamentally reshaping the contours of contemporary biology.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Create the knowledge of DNA replication and repair	
2	Analyse the mechanism of transcription and post transcriptional modification	
3	Understand the mechanism of translation and post translational modification	
4	Understand the regulation of gene expressions	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1			~	
CO 2			~	
CO 3			~	
CO 4			~	
CO 5		~		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	REPLIC	CATION AND DNA REPAIR	10
	1	Classical experiments in Molecular Biology	
1	2	Replication in prokaryotes and eukaryotes: enzymes and protein factors, Mechanism of replication, Cellular control.	
	3	Telomeres, telomerase and end replication, role of	

	telomerase in aging and cancer.					
		telomerase in aging and cancer.				
	Mutation and Repair - mutation subtypes, mismatch, base-excision, nucleotide excision and direct repair. DNA recombination - homologous, non - homologous and site-specific.					
	TRANS	SCRIPTION	15			
	1	Prokaryotic and eukaryotic transcription - RNA polymerases - general and specific transcription factors-regulatory elements.				
2	2	Mechanism of transcription regulation and transcription termination.				
	3	Post-transcriptional modification – of mRNA, tRNA and rRNA, RNA Splicing				
	4	Inhibitors of transcription.				
	TRANS	SLATION	15			
	1	Genetic code – Features, wobble hypothesis				
3	2	Prokaryotic and eukaryotic translation - translational machinery. Mechanism of initiation - elongation and termination.				
	3	Regulation of translation. Inhibitors of translation.				
	4	Post translational modification of proteins.				
	REGUI	LATION	15			
4	1	Regulation of Gene expression in prokaryotes: induction and repression.				
	2	Operon model-Lac operon, tryptophan operon and Arabinose operon.				
	3	Regulation of Gene expression in eukaryotes: interaction				

		with RNA	
	4	DNA binding proteins Gene dosage, Gene amplification, regulatory transcription factors, Histone acetylation and deacetylation.	
5	Teacher	Specific Module	5
5	Directio	ns	

- 1. Pierce, Benjamin A.. Genetics: A Conceptual Approach. United States, W. H. Freeman, 2013.
- 2. Russell, Peter JI. Genetics: A Molecular Approach. United Kingdom, Pearson/Benjamin Cummings, 2006.
- 3. Watson, James D. Molecular Biology of the Gene. United Kingdom, Pearson/Benjamin Cummings, 2008.
- 4. Rastogi, Veer-Bala. Principles of Molecular Biology. Medtech Publisher, 2010.

Module	Unit	Reference No.
	1	2
1	2	3
1	3	1
	4	3
	1	2
2	2	3
2	3	3
	4	4
	1	2
3	2	3
	3	2

	4	1
	1	4
4	2	3
	3	3
	4	4

Suggested Readings:

- 5. Lewin, Benjamin. Gene IX. Jones and Bartlett Publishers, 2017.
- 6. De Robertis, E. D. P., and De Robertis, E. M. F. Cell And Molecular Biology. India, Lippincott Williams & Wilkins, 1987.Karp, Gerald. Cell and Molecular Biology. John Wiley and Sons.
- 7. Walker, J.M., and Old, G. E.B. Molecular Biology and Biotechnology. Royal Society of Chemistry, U.K,1988.

Assessment Rubrics:

Eval	uation Type	Marks
End Semester l	Evaluation (Theory)	70
End Semester E	Evaluation(Practical)	0
Continuous Eva	aluation (Theory)	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biotechnology companies
- 2. Research and Development
- 3. Teaching
- 4. Molecular diagnostics
- 5. Entrepreneurship
- 6. Biological technician

V SEMESTER

KU5DSCBCH 301: IMMUNOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSC	Higher	KU5DSCBCH301	4	75

Learning Approach (Hours/ Week)			rning Approach (Hours/ Week) Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3	2	0	25	75	100	2

Course Description

Immunology is a dynamic field at the intersection of biology and medicine that investigates the complex mechanisms underlying the body's defence against pathogens and its role in maintaining health. This introductory course offers a comprehensive overview of the fundamental principles of immunology, providing students with a solid foundation in understanding the immune system's structure, function, and regulation. Throughout this course, students will explore the intricate network of cells, molecules, and organs that collectively form the immune system. Topics covered include innate immunity, adaptive immunity, antigen recognition, immune cell development and differentiation, immune responses to infections, mechanisms of immunological memory, and the role of immunology in health and disease.

Students will delve into the diverse array of immune cells such as macrophages, dendritic cells, B cells, and T cells, and their specialized functions in recognizing and eliminating pathogens. Additionally, the course will examine the role of antibodies, cytokines, and other signalling molecules in orchestrating immune responses and maintaining immune homeostasis.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand the basics of the immune system.	
2	Comprehend ANTIGEN-ANTIBODY reaction.	
3	Understand different autoimmune diseases.	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~	~		
CO 2			~	
CO 3				~

COURSE CONTENTS

MODULE	UNIT	T DESCRIPTION	
	IMMUN	IE SYSTEM	10
	1	Introduction to the immune system	
1	2	Components of immunity: Innate immunity- Anatomic, physiological, phagocytic and inflammatory barriers; Adaptive immunity, Active and passive immunization.	
	3	Types of vaccines.	
	CELLS	AND ORGANS OF IMMUNE SYSTEM	10
2	1	Organs of the immune system: Central and peripheral lymphoid organs.	
2	2	Cells of the Immune system: stem cells, MHC, maturation of B and T lymphocytes, macrophages, and natural killer cells.	
	3	Primary and Secondary Immune Responses.	
	4	A brief account of Humoral and cell-mediated immune responses.	
	ANTIG	EN ANTIBODY REACTIONS	15
3	1	Antigens: Factors that influence antigenicity, epitopes, haptens	
	2	Immunoglobulins: Structure of immunoglobulins, Classes of immunoglobulins and their functions.	
	3	Monoclonal antibody and hybridoma technology	
	4 complement system: The function of complement, complement activation.		
	5	5 Hyper-sensitivity-Gell and Coombs classification types: Anaphylactic hypersensitivity, type II: antibody-	

	6	mediated cytotoxic hypersensitivity, type III: Immune complex-mediated hypersensitivity, type IV: cell-mediated delayed hypersensitivity. Antigen-antibody interactions: Precipitation reaction; -			
		lattice hypothesis.			
	7	Immunodiffusion, Immuno electrophoresis Agglutination reaction and its applications. ELISA, RIA, Immunofluorescence, Widal and CFT			
	AUTOI	MMUNE DISEASES	10		
	1	Definition of causes and types of immune diseases.			
4	4 2 Systemic lupus erythematosus				
	3	Haemolytic anemia			
	4	Rheumatoid arthritis and Insulin depended diabetic mellitus			
	Teacher	Specific Module :Practicals	30		
5	Determination of human blood group antigen and Rh antigen				
	2	Latex agglutination test (ASO/RA)			
	3	Electrophoresis-Double diffusion Immuno			
	4	Immuno electrophoresis-Double diffusion			
	5	Widal test			

- Kindt, Thomas J., et al. Kuby Immunology. W. H. Freeman, 2007.
 Delves, Peter J., et al. Essential Immunology. Blackwell Publishing, Massachusetts, USA.

Module	Unit	Reference No.
	1	1
1	2	3
	3	2
	1	1
	2	2
2	3	2
	4	2
2	1	1
3	2	1

	3	2
	4	3
	5	2
	6	2
	7	3
	8	1
	1	1
4	2	2
	3	2
	4	3

Suggested Readings:

- 3. Rastogi, S. C. Elements of Immunology. CBS Publishers & Distributors, 2006.
- 4. Ananthanarayan, and Paniker, C. K. J. Textbook of Microbiology. Orient Longman.

Assessment Rubrics:

	Evaluation Type				
End Sem	End Semester Evaluation (Theory)				
End Sem	End Semester Evaluation (Practical)				
Continuo	10				
a)	a) Test Paper				
b)	Assignment	2			
c)	3				
	100				

Employability for the Course:

- 1) Biochemical companies
- 2) Research and Development
- 3) Teaching
- 4) Immunological diagnostics
- 5) Immunological technicians

V SEMESTER KU5DSCBCH 302: METABOLISM -I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSC	Higher	KU5DSCBCH 302	4	60

Learning Approach (Hours/ Week)			Mar	Duration of		
Lecture	Lecture Practical/ Internship Tutorial			ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Metabolismisthesetoflife-sustainingchemicaltransformationswithinthecellsof living organisms. The se enzyme catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. Carbohydrate metabolism denotes the various biochemical processes responsible for the formation, breakdown and interconversion of carbohydrates in living organisms. Carbohydrate metabolism is a fundamental biochemical process that ensures a constant supply of energy to living cells. The most important carbohydrate is glucose, which can be broken down via glycolysis, enter into the Kreb's cycle and oxidative phosphorylation to generate ATP.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Evaluate the general principals of cellular energy metabolism.	
2	Analyse and schematize the oxidative pathways of carbohydrates, Lipids, Proteins & Nucleic acids.	
3	Explain and schematize the final mitochondrial oxidative pathways	
4	Understand the inhibitors and uncouplers of ETC.	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

Mapping of Course Outcomes to PSOs							
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7

CO 1	~			~			
CO 2		>			~		
CO 3			~				~
CO 4			>			~	
CO 5	~			*			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	
	INTRO	DUCTION TO METABOLISM	10
	1	General features of metabolism: Use of intact organisms, bacterial mutants, tissues, lices and radioactive isotopes.	
1	2	Bioenergetics -Concept of Enthalpy & Entropy. Thermodynamic laws-First, Second and third laws.	
	3	Concept of standard free energy change & equilibrium constant.	
	4	Role of high-energy phosphates in energy transfer. Structure of ATP	
	CARBO	OHYDRATE METABOLISM	15
	1	Overview of glycolysis and gluconeogenesis pathway. Detailed study of regulatory mechanism and energetics.	
2	2	Overview of citric acid cycle. Detailed study of regulatory mechanism and energetics.	
	3	Overview of glycogenesis and glycogenolysis-detailed study of hormonal regulation and role of secondary messengers.	
	4	Overview of Pentose phosphate pathway and Glyoxylate Cycle-Significance	
	LIPID	METABOLISM	15
3	1	Biosynthesis of fatty acids – fatty acid synthase and regulation of fatty acid synthesis.	
	2	Oxidation of fatty acids – alpha, beta and omega oxidation. Biological regulation and significance of fatty acid metabolism	

		Metabolism of ketone bodies - Formation, utilization, excretion and clinical significance. Metabolism of triglycerides.	
	l I	Metabolism of phospholipids. Cholesterol – Biosynthesis and regulation.	
		IONDRIAL ELECTRON TRANSPORT CHAIN IDATIVE PHOSPHORYLATION	15
		Electron Transport Chain: Introduction, Structural features of Mitochondria.	
4		Sequence of electron carriers: NADH dehydrogenase, Succinate dehydrogenase, Cytochrome reductase and Cytochrome oxidase (outline of electron transport chain), Inhibitors of electron transport chain.	
	3	Structure and function of ATP synthase	
		Oxidative phosphorylation: Sites of ATP production, Hypothesis of mitochondrial oxidative Phosphorylation-Chemiosmotic theory, P/O ratio, Inhibitors and Uncouplers.	
5		Specific Module	5
5	Directions	S	

- 1. Tymoczko, John L., Jeremy M. Berg, and Lubert Stryer. Biochemistry: A Short Course. Macmillan, 2011.
- 2. Cox, Michael M. Lehninger Principles of Biochemistry. Freeman, 2013.
- 3. Garrett, Reginald, and Charles Grisham. Biochemistry. Nelson Education, 2012.
- 4. Voet, Donald, et al. Fundamentals of Biochemistry. John Wiley & Sons, 2008.
- 5. Zubay, Geoffrey L., et al. Principles of Biochemistry: Student Study Art Notebook. Wm. C. Brown, 1995.
- 6. Devlin, Thomas M. Textbook of Biochemistry: With Clinical Correlations. John Wiley & Sons, 2011.
- 7. Jain, J. L., Jain, S., & Jain, N. Fundamentals of Biochemistry. S. Chand & Co Ltd, 2008.
- 8. Murray, Robert K., et al. Harper's Illustrated Biochemistry. 26th ed., McGraw Hill, 2003.
- 9. Chatterjea, M. N. Clinical Chemistry. Jaypee Publications, 1999.

Module	Unit	Reference No.
	1	2
1	2	7
	3	7
	4	8
	1	7
2	2	2
2	3	9
	4	5
	1	9
3	2	9
	3	3
	4	2
	1	2
4	2	7
	3	9
	4	5

Suggested Readings:

- 1. Cox, Michael M. Lehninger Principles of Biochemistry. Freeman, 2013.
- 2. Voet, Donald, et al. Fundamentals of Biochemistry. John Wiley & Sons, 2008. (Location: New York)

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- **4.** Quality control labs
- 5. Clinical Biochemist

V SEMESTER KU5DSC BCH 303: CLINICAL BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSC	Higher	KU5DSC BCH 303	4	75

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3	2	0	25	75	100	2

Course Description:

This course typically covers topics such as biochemical pathways, enzyme kinetics, metabolism, hormone regulation, and the role of biomarkers in health and disease. Students learn laboratory techniques for analysing blood, urine, and other bodily fluids to assess organ function, detect abnormalities, and monitor treatment effectiveness. Additionally, the course often includes discussions on the interpretation of laboratory results, quality control measures, and the application of biochemical principles in clinical practice.

Course Prerequisite: NIL Course Outcomes:

CO No.	No. Expected Outcome			
1	Gain the knowledge about conducting biochemical analyses of various biological samples.			
2	Understanding the biochemical basis of diseases and disorders			
3	Competence in utilizing biochemical markers and assays to assess organ functions and clinically important enzymes			
4	Proficiency in different clinical biochemical testes			

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2		>		
CO 3		>		
CO 4		>		
CO 5				~

COURSE CONTENTS

MODULE	LE UNIT DESCRIPTION			
	INTRO	ODUCTION TO CLINICAL BIOCHEMISTRY	15	
	1	Definition and scope of clinical biochemistry in diagnosis.		
1	2	Collection, preservation, and normal values of important constituents of Biological Fluids- blood, urine &CSF		
	3	Requirements of setting up of clinical laboratory,		
		collection, preparation, Preservation and handling of		
		Clinical samples.		
	4	Quality control, Safety measures in clinical Laboratory.		
	CLINI	ICAL IMPORTANCE OF BIOMOLECULES	10	
	1	Carbohydrates-Estimation of glucose, glycosuria's, GTT's,		
		hyper & hypoglycemia, blood Glucose Regulation and role		
2		of hormones; diabetic coma		
	2	Lipids-lipid profile estimation, Hypercholesterolemia,	-	
		Hyperlipoproteinemia, atherosclerosis and it risk factors.		
	3	Amino acids-Phenyl Ketonuria, Alkaptonuria, cystinuria, tyrosinemia, Albinism.		
	4	Proteins-Albumin, hypoalbuminemia, Hypoproteinemia,		

		Bence Jones proteins, proteins in CSF and their estimation		
	ORGAN FUNCTION TESTS			
	1	Liver Function Test: Jaundice, Types, Clinical Features, Test based on bile pigments–Plasma proteins in health and diseases–PT, PTT, INR.		
3	2	Gastric Function Test: Examination of Gastric residuum.		
	3	Kidney Function Test: Clearance test–Urea, Creatinine, PAH test, Concentration and dilution tests. Normal and abnormal constituents of urine.		
	CLIN	ICAL ENZYMOLOGY	10	
	1	Plasma Lipase, amylase, choline Esterase, SGOT, SGPT, LDH and CPK- clinical significance		
4	2	Isoenzymes-Examples- clinical significance		
	3	Erythrocyte sedimentation rate (ESR), Clotting Time and Bleeding Time, INR, Packed cell Volume (PCV)- Clinical importance		
	Teach	er Specific Module: Practical's	30	
	1	Estimation of Total serum protein, Creatinine, Urea, Cholesterol		
	2	Tests for normal & abnormal constituents of urine		
5	3	Estimation of DNA and RNA		
	4	Assay of SGOT in serum		
	5	Assay of SGPT in serum		
	6	Purification of blood proteins by Dialysis		

- Chatterjea, M. N. Clinical Chemistry. 1st ed., Jaypee Publications, 1999.
 Bishop, Micheal L., Edward P. Fody, and Larry E. Scoeff. Clinical Chemistry: Techniques, Principles, Correlations. 6th ed., Wolter Kluwer, 2010.

Module	Unit	Reference No.
	1	4
1	2	8
1	3	2
	4	2
	1	1
	2	1
2	3	1
	4	1
	1	1
3	2	1
3	3	2
	4	2
	1	6
	2	6
	3	6
4	4	6
•	5	6
	6	6
	7	6
	8	6

Suggested Readings:

- 3. William, J., and Lapsley Marshall. *Clinical Biochemistry: Metabolic and Clinical Aspects*. Elsevier Health Sciences UK, 2014.
- 4. Teiz. Fundamentals of Clinical Biochemistry. W.B. Saunders Company.
- 5. Gaw, Allan, et al. *Clinical Biochemistry E-Book: An Illustrated Colour Text*. Elsevier Health Sciences, 2013.
- 6. Sattanathan, G., et al. Practical Manual of Biochemistry. Skyfox Press, 2020.

Assessment Rubrics:

Evaluation Type	Marks
End Semester Evaluation (Theory)	75
End Semester Evaluation(Practical)	25
Continuous Evaluation (Theory)	10
a) Test Paper	5

b)	Assignment	2
c)	Seminar	3
	Total	100

Employability for the Course:

- 1. Clinical laboratory
- 2. Research and Development
- 3. Teaching
- 4. Lab technician
- 5. Drug industries

KU5DSE BCH 301: HERBAL TECHNOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSE	Higher	KU 5 DSE BCH 301	4	60

Learning	Approach (Hou	Marks Distribution			Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)	
4	0	0	30	70	100	2	

Course description:

This course typically covers the cultivation, processing and utilization of medicinal plants. Students learn about general methods of phytochemical plant analysis and pharmacogenetic characters of medicinal plants. It also helps students to know the WHO and ICH guidelines for evaluation of herbal drugs.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	To gain knowledge related to the herbal technology	
2	Know the various extraction and chromatographic methods commonly involved in phytochemistry.	

3	Aware of structural analysis techniques involved in identification of bioactive compounds from plant extracts	
4	Helps the students to understand the organization and research of natural products in herbal drugs industries	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C) Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		~		
CO 3			~	
CO 4				~
CO 5				~

MODULE	UNIT	DESCRIPTION	HOURS
	EXTRACTION AND PURIFICATION METHODS		
1	1	Extraction – purification of bio-active compounds from plants	
	2	Cold & hot extract extraction.	
	3	Soxhlet extraction - crude extracts purification by various solvents.	
	CHRO	MATOGRAPHIC AND STRUCTURAL ANALYSIS	15
	TECH	NIQUES	13
2	1	Isolation of bioactive compounds-Introduction and methods	
2	2	Chromatographic techniques - thin layer chromatography, HPLC and UPLC	
	3	Structural analysis of bioactive compounds - IR spectroscopy - Mass spectroscopy, GC-MS, LC-MS, NMP spectroscopy and their applications in natural	
	3	•	

	products.	
	INTRODUCTION TO HERBAL INDUS	TRY 15
	1 General Introduction to Herbal Indu and future prospects.	stry: Present scope
3	2 Schedule T – Good Manufacturing systems of medicine Components T) and its objectives Infrastrum working space, storage area, mach standard operating procedures, documentation and records	of GMP (Schedule – actural requirements, innery and equipment,
	3 WHO & ICH guidelines for the drugs	assessment of herbal
	4 Stability testing of herbal drugs (in	brief)
	ANALYTICAL PHARMACOGNOSY	15
	1 Drug adulteration - types, methods	of drug evaluation
4	2 Biological testing of herbal drugs	
	Preliminary phytochemical screening metabolites (alkaloids, flavonoids, sphenolic compounds	•
_	Teacher Specific Module	5
5	Directions	

- 1.Harbone, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd ed., Springer (India) Private Limited, New Delhi, 1998.
- 2. Silverstein, R.M., and Wester, F.X. Spectroscopic Identification of Organic Compounds. John Wiley, 1998.
- 3. Willard, H.H., Merrit, L.L., and Dean, J.A. Instrumental Methods of Analysis. 1987.

Module	Unit	Reference No.
1	1	3
	2	3

	3	2
	1	3
2	2	2
	3	1
3	1	2
	2	1
	3	1
	4	3
4	1	3
	2	1
	3	2

Core suggested and additional reading:

- 1. Gokhale, S.S., Kokate, C.K., and Purohit, A.P. Pharmacognosy. Nirali Prakashan, 1994.
- 2. Tyagi, Dinesh Kumar. Pharma Forestry: Field Guide to Medicinal Plants. Atlantic Publishers and Distributors, 2005.
- 3. Mukherjee, P.W. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. Business Horizons Publishers, 2002.

Assessment Rubrics:

Ev	aluation Type	Marks
End Semes	ter Evaluation	70
Continuous Evaluation (Theory)		30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the course/Programme

- 1. Herbal products Industry
- 2. Research and development
- 3. Biotechnology Industry

KU 5DSE BCH302: ECOLOGY

Semester Course Type Course Level Course Code Credits Total House

V	DSE	Higher	KU5DSE BCH302	4	60
---	-----	--------	---------------	---	----

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course description

Ecology course typically aims to understand the components of environment and ecosystem how the energy flow occurs in an ecosystem. It also encloses the details of different biochemical cycles and an in-depth study on ecological successions.

Course prerequisite: NIL

Course outcome

CO No.	Expected Outcome	Learning
		Domains
1.	Students will be able to understand the basic concept of	
	environment and ecosystem through studying its components.	
2.	Understand about different levels of production and the differences	
	between various ecological pyramids	
3.	Understand about the 2 types of biogeochemical cycles and its	
	importance in maintaining the ecosystem	
4.	Learn about different patterns and types of ecological successions	
	along with the details of climax community.	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1					~	
CO 2				~		
CO 3				~		

CO 4			~	

COURSE CONTENTS

COMPONENTS OF THE ENVIRONMENT. 1 The atmosphere or the air: Layers of Atmosphere, Composition of air; importance of atmosphere, meteorological conditions and air circulation. 2 The hydrosphere or water: Importance of water, distribution of water at global, national and state level. Hydrological cycle. 3 Lithosphere or the rock and the soil: Elementary composition of rocks in the earth crust. Types of rocks; Process of soil formation: Physical weathering, Chemical and biological weathering of rocks; Role of soil in shaping the biosphere. ECOSYSTEM 1 Ecosystem Definition; Components of ecosystem; Abiotic components: Light, Temperature, Pressure, Water, Wind, Soil; Biotic components; 2 Energy flow in an ecosystem: Primary production, Secondary production; Food chain: Grazing food chain, Detritus food chain; 3 Ecological pyramids: Pyramid of number, Pyramid of biomass, Pyramid of energy; 4 Food web; Ecological indicators 3 BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle. 2 Sedimentary cycles: Phosphorus cycle, Sulphur cycle.	MODULE	UNIT	DESCRIPTION	HOURS
Composition of air; importance of atmosphere, meteorological conditions and air circulation. 2 The hydrosphere or water: Importance of water, distribution of water at global, national and state level. Hydrological cycle. 3 Lithosphere or the rock and the soil: Elementary composition of rocks in the earth crust. Types of rocks; Process of soil formation: Physical weathering, Chemical and biological weathering of rocks; Role of soil in shaping the biosphere. ECOSYSTEM 2 Ecosystem Definition; Components of ecosystem; Abiotic components: Light, Temperature, Pressure, Water, Wind, Soil; Biotic components; 2 Energy flow in an ecosystem: Primary production, Secondary production; Food chain: Grazing food chain, Detritus food chain; 3 Ecological pyramids: Pyramid of number, Pyramid of biomass, Pyramid of energy; 4 Food web; Ecological indicators BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.		COMI	PONENTS OF THE ENVIRONMENT.	10
of water at global, national and state level. Hydrological cycle. 3 Lithosphere or the rock and the soil: Elementary composition of rocks in the earth crust. Types of rocks; Process of soil formation: Physical weathering, Chemical and biological weathering of rocks; Role of soil in shaping the biosphere. ECOSYSTEM 1 Ecosystem Definition; Components of ecosystem; Abiotic components: Light, Temperature, Pressure, Water, Wind, Soil; Biotic components; 2 Energy flow in an ecosystem: Primary production, Secondary production; Food chain: Grazing food chain, Detritus food chain; 3 Ecological pyramids: Pyramid of number, Pyramid of biomass, Pyramid of energy; 4 Food web; Ecological indicators BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.	1	1	Composition of air; importance of atmosphere, meteorological	
of rocks in the earth crust. Types of rocks; Process of soil formation: Physical weathering, Chemical and biological weathering of rocks; Role of soil in shaping the biosphere. ECOSYSTEM 1		2	of water at global, national and state level. Hydrological	
1 Ecosystem Definition; Components of ecosystem; Abiotic components: Light, Temperature, Pressure, Water, Wind, Soil; Biotic components; 2 Energy flow in an ecosystem: Primary production, Secondary production; Food chain: Grazing food chain, Detritus food chain; 3 Ecological pyramids: Pyramid of number, Pyramid of biomass, Pyramid of energy; 4 Food web; Ecological indicators BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.		3	of rocks in the earth crust. Types of rocks; Process of soil formation: Physical weathering, Chemical and biological	
components: Light, Temperature, Pressure, Water, Wind, Soil; Biotic components; 2 Energy flow in an ecosystem: Primary production, Secondary production; Food chain: Grazing food chain, Detritus food chain; 3 Ecological pyramids: Pyramid of number, Pyramid of biomass, Pyramid of energy; 4 Food web; Ecological indicators 3 BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.		ECOS	YSTEM	15
production; Food chain: Grazing food chain, Detritus food chain; 3	2	1	components: Light, Temperature, Pressure, Water, Wind,	
biomass, Pyramid of energy; 4 Food web; Ecological indicators BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.		2	production; Food chain: Grazing food chain, Detritus food	
3 BIOGEOCHEMICAL CYCLES. 1 Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.		3		
Gaseous cycles: Oxygen cycle, Carbon cycle and Nitrogen cycle.		4	Food web; Ecological indicators	
cycle.	3	BIOG	EOCHEMICAL CYCLES.	15
2 Sedimentary cycles: Phosphorus cycle, Sulphur cycle.		1		
		2	Sedimentary cycles: Phosphorus cycle, Sulphur cycle.	

	ECOL	ECOLOGICAL SUCCESSION.				
4	1	Pattern Of succession- early successional species, late successional species				
	Types of ecological succession – primary and secondary, autogenic and allogenic, autotrophic and heterotrophic.					
	3	Mechanism of succession –nidation, invasion, ecesic, aggregation, competition, reaction and stabilization (climax). Climax community				
	4	Models of succession – facilitation model, tolerance model, inhibition mode Oxidative phosphorylation and ETC.				
	5	Teacher Specific Module	5			

- 1. Stiling, Peter D. Ecology: Global Insights & Investigations. McGraw-Hill,2012.
- 2. Mukherjee, B. Environmental Biology. Tata McGraw-Hill Publishing, 1997.
- 3. Chapman, J. L., and Reiss, M. J. Ecology: Principles and Applications. Cambridge University Press, 1992.
- 4. Singh, J.S., Singh, S.P., and Gupta, S.R. Ecology, Environment & Resource Conservation. Anamaya Publications, 2008.
- 5. Colin, R., Townsend, Michael B., and John L. H. Essentials of Ecology. 3rd ed., Blackwell Science Publishers, 2012.

MODULE	UNIT	REFERENCE NO.
	1	2
	2	1
1	3	3
	1	4
	2	1
2	3	3
	4	2
	1	4
3	2	1
	1	3
	2	2

4	3	1
	4	4

Suggested readings

- 6. Taiz, Lincoln, and Eduardo Zeiger. Plant Physiology and Development. 6th ed., Sinauer Associates, Inc., 2010.
- 7. Buchanan, Bob B., Wilhelm Gruissem, and Russell L. Jones. Biochemistry & Molecular Biology of Plants. 2nd ed., John Wiley & Sons, Ltd, 2015.
- 8. Goodwin, T. W., and E. I. Mercer. Introduction to Plant Biochemistry. Pergamon Press, 1983. (Location: Oxford).

Assessment Rubrics:

E	Evaluation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
Total		100

Employability for the course/Program

- 1. Research and development
- 2. Biotechnology Industry

KU5DSE BCH303: MOLECULAR BASIS OF DISEASES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	DSE	Higher	KU5DSE BCH303	4	60

Learning Approach (Hours/ Week) Marks Distribution						Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	3

Course Description:

The molecular basis of diseases course explores how diseases develop at a biological level. It covers topics like genetic mutations and cellular processes that lead to illnesses such as cancer, genetic disorders, and infections. Through lectures and labs, students learn about the molecular reasons behind diseases and how they can be treated.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understanding inflammation at molecular level.	
2	Thinking critically about scientific information.	
3	Solving problems related to disease mechanisms	
4	Gaining practical lab skills	
5	Teacher specific	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	Mapping of Course Outcomes to PSOs						
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	~			~			
CO 2		*			~		
CO 3			~				~
CO 4			~			~	
CO 5	~			~			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS

1	INTRODU	UCTION TO INFLAMMATION	10
	1	Inflammation and Repair/Wound healing: Acute inflammation	
	2	Vascular changes-cellular events-chemical mediators of inflammation-chronic inflammation-	
	3	morphologic patterns in acute and chronic inflammation-systemic effects of inflammation-	
	4	wound healing-mechanism of wound healing- pathologic aspects of inflammation and response	
	CIRCULA	TORY DYSFUNCTION	15
2	1	Hemodynamic disorders, Thrombosis & Shock.	
	2	Edema-hyperemia and congestion hemorrhage- hemostasis and thrombosis-	
	3	Endothelium-platelets-coagulation system-genesis of thrombosis-fate of thrombus-	
	4	Embolism-pulmonary, systemic, amniotic fluid, air and fat infarction-septic shock.	
3	BLOOD D	DISORDERS	15
	1	Red & White cell diseases: Normal development of blood cells-anemias-hemolytic-G6PD deficiency-sickle cell	
	2	Thalassemia's-paroxysmal nocturnal haemoglobinuria-megaloblastic-iron deficiency – chronic disease -aplastic-marrow failure- polycythaemia-bleeding disorders leukopenia	
	3	Reactive proliferation of white cells –neoplastic proliferation of white cells leukaemia's.	
	4	Myeloproliferative disorders - plasma cell dyscrasias.	
4	NUTRITIO	ON AND ITS IMPACT ON HEALTH	15

	1	Environmental and Nutritional diseases: Magnitude of environmental problem-air pollution-chemical and drug injury	
	2	Adverse drug reactions exogenous oestrogens and oral contraceptives	
	3	Carcinogens-street drugs-physical injuries mechanical force-temperature related-hyperthermic injuries-pressure related-electrical and radiation injuries-	
	4	Protein calories malnutrition-nutritional excesses and imbalances-obesity diet and systemic diseases.	
5	Teacher Sp	pecific Module	
		Directions	5

- 1. Cotran, Ramzi S., Vinay Kumar, and Stanley L. Robbins. Pathological Basis of Disease. 8th ed., Prism, India, 2009.
- 2. Coleman, William B., and Gregory J. Tsongalis, eds. *Molecular pathology: the molecular basis of human disease*. academic Press, 2009.

Module	Unit	Reference No.
	1	1
1	2	2
1	3	4
	4	2
	1	3
	2	1
2	3	4
	4	2
	1	1
	2	4
3	3	2
	4	2
4	1	3
4	2	1

3	1
4	2

Suggested Readings:

- 3. Goodman, Louis S., and Alfred Gilman. Pharmacological Basis of Therapeutics. 11th ed., McGraw-Hill, 2006.
- 4. Swaminathan, Ramasamyiyer. *Handbook of clinical biochemistry*. World Scientific, 2011.

VI SEMESTER KU6DSCBCH304: METABOLISM II

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSC	Higher	KU6DSC BCH 304	4	60

Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Metabolism is the set of life-sustaining chemical transformations within the cells of living organisms. These enzyme catalyzed reactions allow organisms to grow and reproduce, maintain their structures and respond to their environments. Carbohydrate metabolism denotes the various biochemical processes responsible for the formation, breakdown and interconversion of carbohydrates in living organisms. Carbohydrate metabolism is a fundamental biochemical process that ensures a constant supply of energy to living cells. The most important carbohydrate is glucose, which can be broken down via glycolysis, enter into the Kreb's cycle and oxidative phosphorylation to generate ATP.

Course Prerequisite: NIL

Course Learning Outcomes: At the end of the Course, the Student will be able to -

No.	Course outcome	
CO1	Analyse the biochemical and genetic regulation of various	
	metabolic pathways of amino acids.	
CO2	Understand the biochemical and genetic regulation of various	
	metabolic pathways of nucleic acids.	
CO3	Analyse the porphyrin and Xenobiotic metabolism	

CO4	Evaluate feedback and reciprocal regulation of metabolic
	pathways.

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	Mapping of Course Outcomes to PSOs						
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	~			~			
CO 2		~			~		
CO 3			~				~
CO 4			~			~	
CO 5	~			~			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION		
	AMINO	AMINOACID METABOLISM		
	1	1 Digestion and absorption of proteins, proteolytic enzymes.		
1	2	Trans amination, Oxidative deamination, non-oxidative deamination, Reductive amination and Decarboxylation of amino acids		
	3	Metabolism of non-essential amino acids		
	4	Urea cycle- Significance and regulation		
	NUCLEI	C ACID METABOLISM	15	
2	1	Nucleotide biosynthesis- de novo and salvage pathways for biosynthesis of purine and pyrimidine nucleotides.		
	2	Mechanism of regulation of Nucleotide biosynthesis.		
	3	Mechanism of purine and pyrimidine catabolism		
3	METAB	OLISM OF PORPHYRIN AND XENOBIOTICS	15	

	1 Biosynthesis and degradation of Porphyrin	
	Heme formation, Biosynthesis of Bilirubin, Transport an excretion of bile pigment.	nd
	Phase 1 reactions. Oxidation, reduction, hydrolysis and hydration.	
	Phase 2 reaction/conjugation: methylation, glutathione a amino acid conjugation, detoxification.	ınd
	METABOLISM INTER RELATIONSHIP	15
	Integration of metabolic pathways -overview. Feedba	ick
4	Hormonal and Allosteric regulation of pathways carbohydrate, fat, nucleotide and protein metabolism	in
	Metabolic variations under alter nutritional/physiological status- starvation, well fed a pregnancy.	
5	Teacher Specific Module	5
3	Directions	

- 1. Tymoczko, John L., et al. Biochemistry: A Short Course. Macmillan, 2011.
- 2. Cox, Michael M. Lehninger Principles of Biochemistry. Freeman, 2013.
- 3. Garrett, Reginald, and Charles Grisham. Biochemistry. Nelson Education, 2012.
- 4. Voet, Donald, et al. Fundamentals of Biochemistry. John Wiley & Sons, 2008.
- 5. Zubay, Geoffrey L., et al. Principles of Biochemistry: Student Study Art Notebook. Wm. C. Brown, 1995.
- 6. Devlin, Thomas M. Textbook of Biochemistry: With Clinical Correlations. John Wiley & Sons, 2011.
- 7. Jain, J. L., Jain, S., & Jain, N. Fundamentals of Biochemistry. S. Chand & Co Ltd, 2008.
- 8. Murray, Robert K., et al. Harper's Illustrated Biochemistry. 26th ed., McGraw Hill, 2003.
- 9. Chatterjea, M. N. Clinical Chemistry. Jaypee Publications, 1999.

Module	Unit	Reference No.
1	1	9
	2	9
	3	2
	4	4

	1	4
2	2	4
4	3	2
	4	4
	1	9
3	2	9
	3	3
	4	2
	1	2
4	2	7
	3	9
	4	5

Suggested Readings:

- 10. Cox, Michael M. Lehninger Principles of Biochemistry. Freeman, 2013.
- 11. Voet, Donald, et al. Fundamentals of Biochemistry. John Wiley & Sons, 2008.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- **3.** Teaching
- 4. Quality control analysis
- 5. Clinical Biochemist

VI SEMESTER

KU6DSCBCH 305: GENETICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSC	Higher	KU6DSCBCH 305	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4	0	0	30	70	100	2

Course Description:

The rapid advancements in understanding the role of the human genome in health and disease. Basic concepts of identifying human chromosome, Inheritance of human traits, and pedigree analysis.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	History and scope of Genetics	
2	Understanding the pre-Mendelian genetic concepts	
3	To study the laws and concepts of Mendelian inheritance	
4	Principles of deviation from Mendelian inheritance with examples	
5	Concept s of multiple alleles with examples	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1						~
CO 2						~

CO 3			~
CO 4			<

MODULE	UNIT	DESCRIPTION	HOURS
	GENET	TICS	10
	1	Introduction: Scope and importance of genetics	
	2	Brief explanation of the following terms – genes, alleles, genotype, phenotype, genome, homozygous and heterozygous	
1	3	Wild and mutant alleles, dominant and recessive traits, test cross and back cross, reciprocal cross	
	4	Mendelian laws, Mendelian traits in man, Chromosome theory of heredity	
	5	Gene interaction.	-
	POPUL	ATION GENETICS & GENETIC DISORDERS	15
	1	Chromosomal mapping, Human genome project	
2	2	Population genetics – gene pool, gene frequency, Hardy – Weinberg law, allele frequency, genetic drift	
	3	Genetic disorders in man, Chromosomal anomalies: Autosomal (e.g.; Down syndrome) Sex chromosomal anomalies (Klinefelter's syndrome, and Turners syndrome) Autosomal single gene disorder (Sickle cell anemia).	
	RECON	MBINATION	15
3	1	Linkage and crossing over; linkage maps, tetrad analysis.	
	2	coupling and repulsion hypothesis, theories of crossing over,	-

		three –point test cross	
	3	Recombination; Homologues and non –homologues recombination	
	4	transposition and site –specific recombination	
	5	Bacterial genetics – conjugation, transduction and transformation.	
	GENE	MUTATION	15
	1	Cytogenetic – Numerical (euploidy, aneuploidy) and structural alterations (deletion, duplication, inversion,	
4		translocation, morphological variations) in chromosomes and their genetic implications.	
	2	Autosomal/sex chromosomal /sex reversal; Mechanism — mitotic/ meiotic nondisjunction	
	3	chromosomal rearrangements; some examples (syndrome /cancer/infertility) – Gene mutations.	
5	Teache	r Specific Module	5
	Directio	ons	

- 1. Pierce, Benjamin A. Genetics: A Conceptual Approach. W.H. Freeman.
- 2. Russel, Peter J. iGenetics: A Molecular Approach. Pearson Education.
- 3. Watson, James D., et al. Molecular Biology of the Gene. Pearson Education.
- 4. Rastogi, Veer-Bala. Principles of Molecular Biology. Medtech Publisher.

Reference Distribution:

Module	Unit	Reference No.
	1	1
	2	1
1	3	2
	4	1
	5	1
2	1	1
4	2	1

	3	1
	1	8
	2	7
3	3	4
	4	2
	5	8
	1	6
4	2	8
	3	2

Suggested Readings:

- 1. Lewin, Benjamin, et al. Lewin's genes X. Jones & Bartlett Learning, 2011.
- 2. De, Robertis EDP, and Robertis EMF De. "Cell and Molecular biology." (2010).
- 3. Karp, Gerald. Cell and Molecular Biology. John Wiley & Sons Incorporated, 2007.
- 4. Wilson, Keith, et al., eds. *Wilson and Walker's principles and techniques of biochemistry and molecular biology*. Cambridge university press, 2018.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Genetic counsellor
- 2. Plant breeder/geneticist
- 3. Research scientist (life sciences)
- 4. Molecular Genetic Pathologist
- 5. Clinical Genetics

VI SEMESTER

KU6DSCBCH306: ENDOCRINOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSC	Higher	KU6DSC BCH 306	4	60

Learning	Approach (Hou	Mar	ks Distribut	ion	Duration of	
Lecture	ecture Practical/ Internship Tutorial			ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Endocrinology is a branch of biology and medicine that deals with the endocrine system, which includes glands that secrete hormones directly into the bloodstream. These hormones act as chemical messengers, regulating various bodily functions such as metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood. The field of endocrinology is interdisciplinary, drawing knowledge from biology, biochemistry, physiology, and clinical medicine. students typically study Endocrine Glands and Hormones, Hormone Regulation, how hormones affect specific organs and systems in the body, such as metabolism, reproduction, growth, and stress response, Endocrine Disorders, Discussion of recent research findings and emerging therapies in endocrinology, Practical applications of endocrinology in diagnosing and managing various medical conditions related to hormone imbalances.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Analyse about scope of endocrinology.	
2	Discussing hormones of hypothalamus, pineal gland, thyroid gland, adrenal gland, pancreas.	
3	Evaluate hormones of female and male reproductive system.	
4	Summarize various endocrinopathies.	

*Remember I, understand (U), Apply (A), Analyse (An), Evaluate I, Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		~		
CO 2		>		
CO 3		>		
CO 4		>		
CO 5				>

MODULE	UNIT	DESCRIPTION	HOURS
	INTROD	UCTION TO ENDOCRINOLOGY	10
	1	Definition and scope of Endocrinology and Historical and anatomical aspects of mammalian endocrine system.	
1	2	Definition of a hormone- chemical nature of mammalian hormones and types of hormone receptors- secondary messenger system	
	3	general mechanism of peptide and non- peptide hormones action	
	4	Feedback regulation of Endocrine System.	
	ENDOCR	INE GLAND AND HORMONES I	15
	1	The hormones of hypothalamus- Hypo-physio tropic hormones- Neurovascular hypothesis.	
2	2	Pituitary and pineal gland hormones- chemistry, biochemical functions, mechanism of action	
	3	Thyroid and parathyroid gland hormones- chemistry-biochemical functions- mechanism of action.	
	4	Adrenal gland hormones- chemistry, mechanism of action, biochemical functions.	

	ENDOC	RINE GLAND AND HORMONES II	15
3	1	Pancreas- Insulin/glucagon: chemistry- biochemical functions- mechanism of action	
	2	Somatostatin. And neuro hormones chemistry- mechanism of action.	
	3	Female reproductive organ hormones – chemistry, biochemical function mechanism of action	
	4	Male reproductive organ hormones – chemistry, biochemical function, mechanism of action	
	DISORI	DERS OF ENDOCRINE GLANDS	15
	1	Endocrinopathies of Hypo-physical, Thyroid, parathyroid, adrenal and pancreas.	
4	2	Disorders of pituitary hormone axis- thyrotoxicosis- hypothyroidism- Hashimoto's thyroiditis	
	3	metabolic bone diseases- Cushing syndrome- Addison's diseases Diabetes mellitus	
	4	Androgen deficiency syndromes- Testicular neoplasm Klinefelter's syndrome and Turner's syndrome.	
	Teacher	Specific Module	5
5	Direction	ns -	

- 1. Kronenberg, Henry M., et al., Williams, Peter R., et al. Textbook of Endocrinology. 11th ed., Saunders Elsevier, 2008.
- 2. Bolander, F. F. Molecular Endocrinology. 3rd ed., Academic Press, 2004.
- 3. Cox, Nelson. Leininger's Principles of Biochemistry. 3rd ed., MacMillan Worth Publishing, 2000.
- 4. Hadely, Mac E. Endocrinology. 5th ed., Pearson Education, 2000.

Reference Distribution:

Module	Unit	Reference No.
1	1	4

	2	1
	3	3
	4	1
	1	1
2	2	1
2	3	1
	4	1
	1	1
3	2	1
3	3	1
	4	1
	1	4
4	2	4
–	3	4
	4	4

Suggested Readings:

5. Sembulingum, K., and Prema Sembulingum. Essentials of Medical Physiology. 6th ed., Jaypee Brothers Medical Publications, New Delhi, 2012.

Assessment Rubrics:

	Evaluation Type	Marks
End Sem	nester Evaluation (Theory)	70
Continuo	ous Evaluation (Theory)	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Diagnostic laboratory
- 2. Research and Development
- 3. Teaching
- 4. Drug industries.

VI SEMESTER

KU6DSE BCH 304: PROTEOMICS AND NUTRACEUTICALS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSE	Higher	KU6DSE BCH 304	4	60

Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	3

Course Description:

This course provides an in-depth exploration of proteomics, focusing on its intersection with nutraceuticals. Students will delve into the analysis of proteins, their functions, structures, and interactions within biological systems, with a specific emphasis on their role in nutrition and health. The course integrates theoretical knowledge with practical applications, including laboratory techniques and case studies.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	To know the concept of nutraceuticals - extra health	
	benefits in addition to the basic nutritional value of food	
2	Enable students to recognize the link between nutrition, health and	
	diseases	
3	Identify major types of health foods and nutraceutical products in	
	the market	
4	To expose students the market opportunity of nutraceuticals and the	
	nutraceutical industry	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

PSO 1	PSO 2	PSO 3	PSO 4

CO 1	~	~		
CO 2		>		
CO 3			~	
CO 4	*			>

MODULE	UNIT	DESCRIPTION	HOURS
	CONCEP	TOFFUNCTIONALFOODS/NEUTRACEUTICALS:	10
	1	Definition and classification of nutraceuticals, dietary supplements, fortified foods, functional foods and Phytonutraceuticals.	
1	2	Scope involved in the industry, Indian and global scenario. Relation of functional foods; Nutraceutical (FFN) to foods & drugs. Applications of herbs to functional foods.	
	3	Concept of free radicals and antioxidants; Nutritive and Non-nutritive food components with potential health effects	
	4	Role of nutraceuticals in the prevention and treatment with special reference to diabetes mellitus, hypertension, hypercholesterolemia. Concept of antioxidants-use of antioxidants as dietary supplements in prevention and treatment of cancer, obesity and stress	
	NUTRAC	EUTICALS OF PLANT ORIGIN	15
2	1	Nutraceuticals in Fruits and Vegetables and their Health Benefits; Sources and role of Isoprenoids, Isoflavones, Flavonoids, carotenoids, Tocotrienols, polyunsaturated fatty acids, sphingolipids, lecithin, choline. terpenoids.	
	2	Vegetables, Cereals, milk and dairy products as Functional foods.	
	3	Health effects of common beans, <i>Capsicum annum</i> , mustards, garlic, grape, citrus fruits.	
	NUTRAC	EUTICALSOFANIMALORIGIN	15
3	1	Animal metabolites-Sources and extraction of nutraceuticals of animal origin. Examples.	
3	2	chitin, chitosan, glucosamine, chondroitinsulphate and other polysaccharides of animal origin.	
	3	Examples: uses and applications in preventive medicine	

	and treatment. fish oils, and sea foods.		
	MICROBIAL AND ALGAL NUTRACEUTICALS		
	Concept of prebiotics and probiotics -principle, mechanism, production and technology involved, different forms available in the market.		
4	Benefits & applications-examples of bacteria used as probiotics, Types & use of prebiotics in maintaining the useful microflora & other health benefits-extraction from plant sources.		
	Symbiotic for maintaining good health. Algae as source of omega-3 fatty acids, antioxidants and minerals-extraction and enrichment		
5	Teacher Specific Module	5	
	Directions		

Compulsory Reading:

- 1. Shi, John. Asian Functional Foods. CRC Press, 2005.
- 2. Webb, Geoffrey P. Dietary Supplements and Functional Foods. Blackwell, 2006.

Further Reading:

- 1. Shi, John. Functional Food Ingredients and Nutraceuticals: Processing Technologies. CRC Press, 2007.
- 2. Bagchi, Debasis. Nutraceutical and Functional Food Regulations in the United States and Around the World. Elsevier/Academic Press, 2008.
- 3. Shibamoto, Takayuki. Functional Food and Health. Oxford University Press, 2008.
- 4. Guo, Mingfu. Functional Foods: Principles and Technology. CRC Press, 2009.
- 5. Verma, Madan L., and Anuj K. Chandel, eds. *Biotechnological production of bioactive compounds*. Elsevier, 2019.
- 6. Mutanda, Taurai, and Faizal Bux. "Microalgal Cells." *Biotechnological Applications of Microalgae: Biodiesel and Value-Added Products* (2013): 45.
- 7. Bidlack, Wayne R., and Raymond L. Rodriguez, eds. *Nutritional genomics: the impact of dietary regulation of gene function on human disease*. CRC Press, 2011.
- 8. Hamilton, Eva May Nunnelley, and Eleanor Noss Whitney. "Nutrition, concepts and controversies." (1982).
- 9. 11.Montville, Thomas J., and Karl R. Matthews. "Physiology, growth, and inhibition of microbes in foods." *Food microbiology: fundamentals and frontiers* (2012): 1-18.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	2
1	3	6
	4	3
	1	1
2	2	2
	3	4
	1	5
3	2	3
	3	2
	1	1
4	2	6
	3	1

Assessment Rubrics:

Ev	aluation Type	Marks
End Semest	ter Evaluation	70
Continuous	Evaluation (Theory)	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Food industries
- 2. Research and Development
- 3. Teaching
- 4. Dietitians
- 5. Entrepreneurship
- 6. Food testing lab- technicians

KU6 DSE BCH 305: LIFE STYLE DISEASES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSE	Higher	KU 6 DSE BCH 305	4	60

Learning Approach (Hours/ Week) Marks Distribution				ion	Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

A brief awareness of the disease that are a part of the changing lifestyle habits of the modern world. The disease includes Parkinson's dementia, Atherosclerosis, Cancer, Diabetes and hypertension.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Attain the knowledge of life style disease, its prevention	
2	Understand the main reason behind diabetes and hypertension	
3	Acquire the knowledge of cancer and cardiac disorders.	
4	Understand the main causes and prevention of Alzheimer's disease,	
	Parkinson's disease.	
5	Teacher specific	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	Mapping of Course Outcomes to PSOs						
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	~			~			
CO 2		~			~		
CO 3			~				~
CO 4			>			~	

CO 5	~		✓		

MODULE	UNIT	DESCRIPTION	HOURS
	CONCEPT	OF LIFE STYLE DISEASES	10
	1	Concept of life style diseases – importance of life style factors in preventing disease development- diet, exercise, smoking, alcohol, etc	
1	2	Body mass index- determination and significance	
	3	Obesity – factors leading to development, prevention, management	
	4	Physiological stress, free radicals and oxidative stress.	
	DIABETES	S AND HYPERTENSION	15
	1	Diabetes – definition, types of diabetes- type 1 and type 2	
2	2	Characteristics – causes, diagnosis, prevention and management	
	3	Hypertension – characteristics, causes and risk factors	
	4	Prevention and management of hypertension	
	CANCER A	AND CARDIOVASCULAR DISEASES	15
	1	Cancer- types, characteristics, causes, Diagnosis, management	
3	2	Genetic basis of cancer – tumour suppressor genes, oncogenes and gene expression	
	3	Atherosclerosis and cardiovascular diseases	
	4	Myocardial infarction, congestive heart failure- causes diagnosis and management	

	ALZHEIN	MER'S AND PARKINSON'S DISEASE	15
	1	Dementia, type of dementia	
4	2	Alzheimer's disease – stages of disease, causes. Pathophysiology and disease mechanism, management of disease	
	3	Parkinson's dementia- causes, symptoms, molecular pathophysiology of disease	
	4	Prevention and disease management.	
5	Teacher S	pecific Module	
	Directions		5

- 1. Satyanarayana, U. Biochemistry. Elsevier Health Sciences, 2014.
- 2. Hall, John E. Guyton and Hall Textbook of Medical Physiology. Saunders, 2015.
- 3. Karp, Gerald. Cell and Molecular Biology. Wiley, 2013.

Reference Distribution:

Module	Unit	Reference No.
	1	2
1	2	2
1	3	2
	4	2
	1	1
	2	1
2	3	2
	4	2
	1	3
	2	3
3	3	1
	4	1
	1	2
4	2	2
•	3	2
	4	2

Suggested Readings:

1. Lippincott. Diseases and Drug Consult: Neurologic Disorders. Williams & Wilkins, 2009.

2. Kumar, Vijay, and Kiran Dip Gill. *Basic concepts in clinical biochemistry: a practical guide*. Springer Singapore, 2018.

Assessment Rubrics:

Ev	aluation Type	Marks
End Semest	ter Evaluation	70
Continuous	Evaluation (Theory)	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Scientific Researcher
- 2. Dietitian
- 3. Teaching
- 4. Wellness coach

VI SEMESTER

KU6DSEBCH306: BIOSAFETY AND BIOETHICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	DSE	Higher	KU6DSE BCH306	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4	0	0	30	70	100	2

Course Description:

The course describes the principles of biosafety and biosecurity in laboratory and clinical settings. It explores the emergency response protocols and procedures for incidents involving biohazardous materials. Students will learn about specific regulations applicable to different sectors including research laboratory, agricultural settings and biotechnology industries and analyse ethical frameworks for resolving conflicts and making ethical decisions in biomedical and life science contexts.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Define Biosafety and bioethics in the context of modem	
	biotechnology.	
2	Analyse the potential bio risks associated with biotechnology and	
	molecular genetics research.	
3	Comprehend basic ethical principles which guide bioscience	
	research.	
4	Apply the basic concepts of biosecurity and Bioethics on real life	
	issues.	
5	Teacher specific	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	M	apping o	of Course	Outcom	es to PS	Os	
	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO 1	~			~			
CO 2		~			~		
CO 3			~				~
CO 4			~			~	
CO 5	~			~			

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	BIOSA	FETY	10
	1	Introduction - Biosafety issues in biotechnology.	
1	2	Biological Safety Cabinets, Primary Containment for Biohazards.	
	3	Biosafety Levels - Levels of Specific Microorganisms, infectious Agents and infected Animals.	
	4	Biological containments and physical containments.	
	BIOSA	AFETY GUIDELINES	15
	1	Guidelines and regulations (National and international including Cartagena Protocol) - operation of biosafety guidelines and regulations of Government of India	
2	2	Definition of GMOs & LMOs.	
	3	Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture.	
	4	Environmental release of GMOs - Risk – Analysis, Assessment, management and communication.	
	GUID	ELINES FOR rDNA RESEARCH ACTIVITIES	15
	1	Large scale experiments, release to environment, import and shipment	
3	2	Mechanism of implementation of biosafety guidelines.	
	3	Quality control of biologicals produced by rDNA technology.	
	4	Revised guidelines for research in transgenic plants.	
	BIOE	THICS	15
4	1	Introduction to ethics and bioethics. Framework for ethical decision making	
	2	Ethical, legal and socioeconomic aspects of gene therapy, germ line, somatic. embryonic and adult stem cell research. Ethical	

	3	implications of GM crops GMO's human genome project, human cloning, designer babies, biopiracy and biowarfare. Eugenics and its possible approaches	
	4	Animal right activities - Blue cross in India- society for prevention of cruelty against animals. Ethical limits of Animal use. Greenpeace - Human Rights and Responsibilities.	
5	Teach	er Specific Module	
	Directi	ons	5

- 1. Bently, Lionel, et al. *Intellectual property law*. Oxford university press, 2022.
- 2. Department of Biotechnology, Government of India. Recombinant DNA Safety Guidelines. 1990.
- 3. Cullet, Philippe. *Intellectual property protection and sustainable development*. New Delhi: LexisNexis Butterworths, 2005.
- 4. Cotton, Bt, and Bt Brinjal. "B1BT24-BIO ETHICS, BIOSAFETY & INTELLECTUAL PROPERTY RIGHTS." *CMR COLLEGE OF ENGINEERING & TECHNOLOGY*: 45.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	1
1	3	4
	4	4
	1	1
	2	4
2	3	2
	4	1
	1	3
	2	2
3	3	2
	4	3
	1	4
4	2	1
4	3	4
	4	4

Suggested Readings:

- 1. Chandrasekaran, Balakumar, et al. "Ethics and Legal Protection of Uses of Computer Applications in Pharmaceutical Research." *Dosage Form Design Parameters*. Academic Press, 2018. 757-770.
- 2. Furr, A. Keith. CRC handbook of laboratory safety. CRC press, 2000.

Assessment Rubrics:

	Evaluation Type	Marks
End Sen	nester Evaluation (Theory)	70
End Sem	ester Evaluation (Practical)	0
Continuo	ous Evaluation (Theory)	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 4. Laboratories, Biotechnology and Pharmaceutical Industries

VII SEMESTER

KU7DSC BCH 401: RESEARCH METHODOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	Advanced	KU7DSC BCH 401	4	60

Learning	Approach (Hou	Mar	ks Distribut	ion	Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4	0	0	30	70	100	2

Course Description:

This course introduces students to the fundamental principles and practices of research methodology across various disciplines. It focuses on equipping students with the necessary knowledge and skills to design, conduct, and evaluate research studies effectively. Emphasis is placed on understanding different research paradigms, methods, and ethical considerations in research.

Course Prerequisite: NIL Course Outcomes:

CO No.	Expected Outcome	Learning	
CO No.		Domains	
1	Understanding of Research Principles		
2	Research Design Proficiency: Capability in designing research		
	studies.		
3	Understanding and adhering to ethical guidelines in research		
4	Critical Thinking Skills: Developing the ability to evaluate research	studies, met	nodologies,
	and findings critically.		

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2			>	
CO 3		>		
CO 4		>		
CO 5				>

COURSE CONTENTS

MODUL	UNIT	DESCRIPTION	HOURS
E			
	INTRODUCTIO	ON TO RESEARCH	10
1	1	The concept of research, characteristics of good research, Application of Research, Meaning and sources of Research problem, characteristics of good Research problem,	
	2	Research process, outcomes, application of Research	
	3	Meaning and types of Research hypothesis	

	4	Importance of Review of Literature, Organizing the Review of Literature	
	CLASSIFICAT	TION OF RESEARCH	15
	1	Types of research, pure (basic, fundamental) and applied research, qualitative and quantitative.	
2	2	Research Design: Meaning, need, types of research design Exploratory, Descriptive, Casual research Design, Components of research design	
	3	Features of good Research design.	
	4	Experiments, surveys and case study Research design	
	SAMPLING, D	OATA COLLECTION AND ANALYSIS	15
	1	Types and sources of data – Primary and secondary,	
3	2	Methods of collecting data, Concept of sampling and sampling methods – sampling frame, sample, characteristics of good sample, simple random sampling, purposive sampling, convenience sampling, snowball sampling,	
	3	classification and tabulation of data, graphical representation of data, graphs and charts – Histograms, frequency polygon and frequency curves, bell shaped curve and its properties	
	4	Statistical Methods for Data Analysis: Applications of Statistics in Research, measures of central tendency and dispersion	
	RESEARCH R	EPORT	15
4	1	Research report and its structure, journal articles – Components of journal article.	
	2	Explanation of various Research Components- Research ethics, Plagiarism and copyright.	

	3	Structure of an abstract and keywords	
	4	Thesis and dissertations. Components of thesis and dissertations. Referencing styles and bibliography.	
5	Teacher Specific	c Module	5
	Directions		

- 1. Cooper, Donald, and Pamela S. Schindler. Business Research Methods. 9th ed., Tata McGraw Hill, 2009.
- 2. Kothari, Chakravanti Rajagopalachari. "Research methodology: Methods and techniques 2004." (2004).
- 3. Sekaran, Uma. Research Methods for Business. 4th ed., Wiley, 2010.
- 4. Kumar, Ranjit. Research Methodology. 2nd ed., Pearson Education, 2009.

Reference Distribution:

Module	Unit	Reference No.
	1	4
1	2	1
1	3	2
	4	2
	1	3
2	2	4
_	3	3
	4	2
	1	2
3	2	2
3	3	2
	4	2
	1	3
4	2	1
	3	2
	4	4

Suggested Readings:

- 1. 1.Malhotra, Naresh, and Satya Bhushan Dash. Marketing Research. 5th ed., Pearson Prentice Hall. 2009.
- 2. 2. Kerlinger, Fred N. Foundations of Behavioural Research.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

VII SEMESTER

KU7DSCBCH402: PHARMACEUTICAL CHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	Advanced	KU7DSCBCH402	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Develop and demonstrate depth and breadth of knowledge in biomedical, pharmaceutical, social/administrative/behavioural and clinical sciences. Integrate knowledge from foundational sciences to explain how specific drugs or drug classes work and evaluate their potential value in individuals and populations. Apply knowledge in foundational sciences to solve therapeutic problems.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning
CO 110.	Expected Outcome	Domains

1	Understand the fundamental concepts of pharmaceutical chemistry				
	and various phases of drug discovery and development.				
2	Illustrate the relevance of pharmacokinetics and				
	pharmacodynamics in drug discovery phases.				
3	Analyse the classes and mode of action of various drugs with				
	special emphasis on antimicrobial agents				
4	Appraise the various sources of natural bioactive compounds and				
	their role as natural pharmaceutical agents.				

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1						~
CO 2						~
CO 3						>
CO 4						~

MODULE	UNIT	DESCRIPTION	HOURS	
	SOURC	E AND CLASSIFICATION OF DRUGS	10	
	1	Introduction to pharmaceutical chemistry, various filed, principles and concepts.		
1	sources of drugs, types of drugs dosage forms & routes of administration.			
	3	Classification of drugs based on sources: mode of administration, site of action, and absorption of drugs		
	4	Major phases of drug discovery and development- Target identification, target validation, lead discovery, lead optimization-preclinical development. clinical and post clinical steps.		

	DRUG	DISTRIBUTION AND ELIMINATION	15
2	1	Introduction to pharmacokinetics, pharmacodynamics, Concept of pharmacophores, drug likeliness	
2	2	Drugs Adsorption, distribution, metabolism, and elimination (ADME), Role of kidney in elimination	
	3	Drug metabolism: chemical pathways of drug metabolism.	
	4	Phase I and Phase II reactions, role of cytochrome P450.	
	MODE	OF ACTION AND SIDE EFFECTS	15
	1	Drug toxicity- Adverse responses and side effects of drugs: allergy, drug intolerance, drug addiction, drugs abuses and their biological effects.	
3	2	Mode of action and uses of the following classes of Drug (structure not expected) Adrenocorticoids - Prednisolone, Dexamethasone, Betamethasone	
	3	Antibacterial agents- Antibiotics-Major classes- Penicillin, Semi-synthetic penicillin, streptomycin, tetracyclines, Cephalosporins, Chloramphenicol (Brief description)	
	4	Antifungal and antiviral agents- Major classes and mode of action with examples (Brief description)	
	NATUI	RAL PHARMACEUTICALS	15
4	1	Identification of pharmaceutical compounds from natural origins- Brief introduction, classes of natural pharmaceuticals- major classes	
	2	Pharmaceutical compounds from plants- major classes, mode of action with examples	
	3	Natural pharmaceutical compounds from actinomycetes, fungi and bacteria (other than antibiotics)- major classes, mode of action and examples	

	4	Natural pharmaceutical compounds from marine sponges- major classes, mode of action, examples	
5	Teacher	Specific Module	5
	Direction	as —	

- 1. Tripathi, K.D. Essentials of Medical Pharmacology. Jaypee Brothers, 2003.
- 2. Finar, Il. Organic Chemistry Vol-1. 6th ed., Dorling Kindersley, 2008.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	1
1	3	1
	4	1
	1	1
2	2	4
4	3	3
	4	4
	1	3
3	2	4
3	3	2
	4	3
	1	4
4	2	1
_	3	2
	4	4

Suggested Readings:

- 3. Nadendla, Rama Rao. Principles of Organic Medicinal Chemistry. New Age International (P) Limited, 2004.
- 4. Katzung, Bertram G. Basic & Clinical Pharmacology. McGraw-Hill, 2006.

Assessment Rubrics:

Evaluation Type	Marks
End Semester Evaluation	70
Continuous Evaluation	30

a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
Total		100

Employability for the Course:

- 1. Scientist/Research Officer/Research Executive
- 2. Professor
- 3. Quality Control & Quality Assurance Analyst
- 4. Scientific Data Entry Specialist
- 5. Patent Analyst.
- 6. Pharmaceutical Patent Analyst.
- 7. Assistant Manager.

VII SEMESTER

KU7DSCBCH 403: PLANT BIOCHEMISTRY

Se	mester	Course Type	Course Level	Course Code	Credits	Total Hours
	VII	DSC	Advanced	KU7DSCBCH 403	4	75

Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3	2	0	25	75	100	2

Course Description:

Plant biochemistry course typically aim to understand biochemical processes and molecular mechanisms underlying plant growth, development and metabolism. It explores the metabolic pathways involved in plant growth and development, including photosynthesis, respiration, biosynthesis of phytohormones and secondary metabolites.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains

1	To know the plant cell organelles and locate its parts along with
	functions and mechanism of photosynthesis
2	In-depth knowledge of different phytohormones and their
	functions
3	Classify and isolate different secondary metabolites and stress
	physiology
4	Analysis of qualitative and quantitative determination of
	phytochemicals

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2		>		
CO 3		>		
CO 4				~

MODULE	UNIT	DESCRIPTION		
	INTRO	DDUCTION TO PLANT CELL AND PHOTOSYNTHESIS	15	
	1	Plant cell organelles Plastids-types, structure, functions Cell wall-properties, plasmodesmata, Glyoximes		
1 2 Plant tissues-vascular tissues, meristem and permeant		Plant tissues-vascular tissues, meristem and permeant tissues		
	3	Photosynthesis - PSI, PS II, LHC, ATP Synthase Light reaction and dark reaction, photophosphorylation		
	4	Photorespiration, C3, C4, CAM pathways, glyoxylate cycle		
	1	PLANT HORMONES	10	
Biosynth 2 Biosynth		Biosynthesis and physiological functions of auxins, GA		
		Biosynthesis and physiological functions of Cytokinin, ABA, Ethylene		

		Biosynthesis and physiological functions of			
2	3	polyamines, brassino steroids			
	4	Biosynthesis and physiological functions of Jasmonic acid, salicylic acid			
	SECO	NDARY METABOLITES	10		
3	1	Classification, isolation, characterization, biosynthetic pathways and applications of alkaloids, phenols,			
	2	Classification, isolation, characterization, biosynthetic pathways and applications of terpenoids, flavonoids.			
	PLAN'	T STRESS	10		
4	Plant stress – biotic and abiotic. abiotic stresses- salinity, floods, drought				
	2 Biotic stresses – allelopathic substance, insects and disease.				
	PRAC	TICALS	30		
	1	Preliminary Phytochemical analysis of plant components- alkaloids, phenolic compounds, tannins, flavonoids, terpenoids and saponins.			
	2	Plant extraction methods – maceration, digestion, decoction, infusion, percolation, Soxhlet extraction, superficial extraction, ultrasound-assisted, and microwave-assisted extractions.			
5	Quantitative estimation of alkaloids, phenolic compounds and tannins, flavonoids, terpenoids and saponins.				
	4	Estimation of vitamin A			
	5	Estimation of vitamin E			
	6	Determination of total phenolic content			

- 1. Taiz, Lincoln, and Eduardo Zeiger. Plant Physiology and Development. 6th ed., Sinauer Associates, Inc., 2010.
- 2. Buchanan, Bob B., Wilhelm Gruissem, and Russell L. Jones. Biochemistry & Molecular Biology of Plants. 2nd ed., John Wiley & Sons, Ltd, 2015.
- 3. Goodwin, T. W., and E. I. Mercer. Introduction to Plant Biochemistry. Pergamon Press, 1983
- 4. Hopkins, W. G., and Hinder, N. P. A. Introduction to Plant Physiology. 3rd ed., John Wiley & Sons Inc., 2004

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	1
1	3	1
	4	1
	1	2
2	2	1
2	3	3
	4	1
	1	1
3	3	1
3	3	6
	4	6
	1	7
	3	7
	3	7
4	4	7
	5	7
	6	7
	7	7

Suggested Readings:

- 5. Gupta, Dharmendra K., and Jose Manuel Palma. Plant Growth and Stress Physiology. Springer.
- 6. Bala, Manju, et al. Practical'sin Plant Physiology and Biochemistry. Scientific Publications.

Assessment Rubrics:

	Evaluation Type	Marks
End Sem	nester Evaluation (Theory)	75
End Sem	ester Evaluation (Practical)	25
Continuo	us Evaluation (Theory)	10
a)	Test Paper	5
b)	Assignment	2
c)	Seminar/viva	3
	Total	100

Employability for the Course:

- 1. Biotechnology companies
- 2. Research and Development
- 3. Teaching
- 4. Biological technicians

VII SEMESTER

KU7DSC BCH 404: PHYSIOLOGICAL ASPECTS OF BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	Advanced	KU7DSC BCH 404	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Physiology refers to the scientific study of regular functions in living organisms. It is a branch of biology and focuses on how certain organisms survive, work and function. It also studies how all aspects of the body of that organism, such as biological, physical, and chemical, are interrelated and vital to the survival of that organism. In this course we will physiology of blood, heart and circulation, respiration, chemical coordination and excretory system.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand the process of digestion and absorption	
2	Illustrate the role of acid base balance by lungs and kidney	
3	To understand the electrical and chemical co-ordination in human body	

4	To understand he mechanism of muscular movement	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		~		
CO 2		>		
CO 3		>		
CO 4		>		
CO 5				>

MODULE	UNIT	DESCRIPTION			
	DIGEST	ION AND ABSORPTION	10		
	1	Structure of digestive tract			
	Digestion and absorption of carbohydrates: amylase, sodium dependent glucose transport				
1 3		Digestion and absorption of proteins: enzymes in protein digestion. Absorption of small peptides and free amino acids, specific transport systems			
	4	Digestion and absorption of lipids: role of bile acids, action of gastric and pancreatic lipases, micellar formation, absorption of lipids			
	НОМЕО	STASIS	15		
2	Structure of respiratory system transport of oxygen, role of haemoglobin, dissociation curve of oxyhaemoglobin and its significance, transport of CO2 and chloride shift,				

	Direction	S	
5	Teacher	Specific Module	5
	3	Branches and scope of physiology	
		movements during the contraction cycle in skeletal muscles	
	2	The sliding filament mechanism and subcellular ion	
4		muscles, Actin, myosin, tropomyosin, troponin, Z disc and H line components.	
	1	Structure and composition of adipose tissue, Classification of muscles- Structure of skeletal, smooth and cardiac muscles. Actin myosin tropomyosin troponin 7 disc and	
		E PHYSIOLOGY	15
	3	Biochemistry and mechanism of action of hypothalamus and pituitary hormones, thyroid hormones, pancreatic hormones, adrenal hormones.	
3	2	Overview of mammalian endocrine system, classification and chemical nature of hormones, molecular mechanism of hormone action- general aspects, hormone receptors, signal transduction.	
	1	Nervous system, neurons, mechanism of nerve impulse transmission, action potential Neurotransmitters, synapses: chemical and electrical synapses, Reflex action and reflex arc. Anatomy and physiology of eye.	
	NEURO	ENDOCRINE SYSTEM	15
	3	Various buffer systems of the blood: Acidosis and alkalosis, role of lung and kidney in regulation of acid-base balance.	
	2	Structure and function of nephron, renal blood flow and its importance, formation of urine, composition of urine, GFR, functions of tubules, acid –base balance	
		Bohr's effect, Haldane's effect, 2,3 bisphosphoglycerate.	

- 1. Hall, John E. Guyton and Hall Textbook of Medical Physiology. Elsevier Health Sciences, 2010.
- 2. Rodwell, Victor W., et al. Harper's Illustrated Biochemistry. McGraw-Hill Medical Publishing Division, 2015.
- 3. Tortora, Gerard J., and Bryan H. Derrickson. *Principles of anatomy and physiology*. John Wiley & Sons, 2018..
- 4. Moyes, Christopher D., and David A. Hood. "Origins and consequences of mitochondrial variation in vertebrate muscle." *Annual Review of Physiology* 65.1 (2003): 177-201.

Reference Distribution:

Module	Unit	Reference No.
	1	4
1	2	4
1	3	4
	4	4
	1	1
2	2	1
2	3	3
	4	1
	1	4
3	2	1
3	3	4
	4	1
	1	2
4	2	4
7	3	4
	4	2

Suggested Readings:

- 5. White, A., Handler, P., & Smith, E. L. Principles of Biochemistry. McGraw Hill, 1954.
- 6. Satyanarayana, U., & Chakrapani, U. Biochemistry. 3rd ed.

Assessment Rubrics:

Evaluation Type	Marks
End Semester Evaluation	70
(Theory)	70
End Semester Evaluation	
(Practical)	-
Continuous Evaluation (Theory)	30
a) Test Paper	10

b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 4. Quality control analysis
- 5. Biotechnology Industry

VII SEMESTER

KU7 DSCBCH 405: CANCER BIOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VII	DSC	Advanced	KU7DSCBCH405	4	60

Learning	Approach (Hou	Mark	ks Distributi	on	Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Cancer biology helps to comprehend how cancer develops at the cellular and molecular levels. This understanding is crucial for devising strategies to prevent, diagnose, and treat cancer. Understanding cancer biology aids in the development of diagnostic tools and techniques. These tools enable healthcare professionals to detect cancer early, when treatment is often more effective. Carcinogens are substances or agents that can cause cancer by damaging the DNA of cells, leading to mutations that can promote the uncontrolled growth and division of cells characteristic of cancer. Cancer biology research leads to the identification of potential targets for therapy. Drugs and therapies can be designed to specifically target cancer cells while minimizing harm to healthy cells.

Course Prerequisite: NIL

Course Outcomes:

CO No. Expected Outcome Learn

		Domains
1	To understand about cancer.	
2	To explain about cancer cell biology.	
3	To analyse about Carcinogenesis & Free radicals and Cancer cell regulation	
4	To analyse about diagnosis and treatment of cancer.	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2		>		
CO 3		>		
CO 4				<

MODULE	UNIT	DESCRIPTION	HOURS
	INTRODUCTION TO CANCER		
	1	Growth characteristics of cancers cells. Morphological and ultra-structural properties of cancer cells.	
1	2	Types of growth -hyperplasia, dysplasia, anaplasia and neoplasia. Nomenclature of neoplasms.	
	3	Differences between benign and malignant tumors.	
	4	Hall marks of cancer. Epidemiology of cancer.	

	CANC	ER CELL BIOLOGY AND BIOCHEMISTRY	15
	1	Aberrant metabolism during cancer development.	
		Warburg effect. Paraneoplastic syndromes. Tumor markers.	
2	2	Cellular proto-oncogenes-oncogenes activation.	
	3	Growth factors- EGF, TNF-α and TGF-β and growth factor receptors–Signal transduction in cancer –transcription factors- NFAT, NF-kB, SMAD and STAT in cancer.	
	4	RAS signaling in cancer.	
	CARC	INOGENESIS AND FREE RADICALS	15
	1	Chemical carcinogenesis- stages in chemical carcinogenesis - Initiation, promotion and progression. Ames tests	
3	2	a) Radiation and Viral carcinogenesis - DNA and RNA viruses in human cancer.	
		b) Free radicals, antioxidants in cancer	
	3	Cancer cell regulation: Cell Cycle Regulation-Tumour suppressor genes p53, p21, Rb, BRCA1 and BRCA2.	
	4	Telomeres and Immortality; cell- cell interactions, cell adhesion-invasion and metastasis - VEGF signalling, angiogenesis.	
	DIAGN	NOSIS AND CANCER TREATMENT	15
	1	Different types of diagnostic approach to detect cancer	
4	2	a) Strategies of Cancer Treatment-Chemotherapy-Gene therapy; Immunotherapy-Immune checkpoint therapy and CAR T-Cell therapy.	
		b) Radiotherapy and Cancer Vaccines	
	3	Nutrition and Cancer management	

	4	4 a) Phytomedicine in Cancer	
		b) Cancer Stem cells	
5	Teacher	r Specific Module	5
3	Directio	ns	

- 1. Weinberg, Robert A. The Biology of Cancer. Garland Science, 2013.
- **2.** McKinnell, Robert G., et al. The Biological Basis of Cancer. Cambridge University Press, 2006.
- **3.** Pelengaris, Spiros, and Michael Khan. The Molecular Biology of Cancer. Wiley-Blackwell, 2013.
- 4. Alison, Malcolm R. The Cancer Handbook. Nature Publishing Group, 2003
- 5. PDQ Cancer Information Summaries. National Cancer Institute, Bethesda (MD), 2006

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	6
1	3	5
	4	1
	1	1
	2	4
2	3	3
	4	1
	1	1
3	2	2
3	3	4
	4	1
	1	1
4	2	2
	3	4

4 3

Suggested Readings:

- **6.** McKinnell, Robert G., et al. The Biological Basis of Cancer. Cambridge University Press, 2006.
- **7.** Pelengaris, Spiros, and Michael Khan. The Molecular Biology of Cancer. Wiley-Blackwell, 2013.
- **8.** Alison, Malcolm R. The Cancer Handbook. Nature Publishing Group, 2003.
- **9.** Hanahan, Douglas, and Robert A. Weinberg. "Hallmarks of Cancer: The Next Generation." Cell, vol. 144, no. 5, 2011, pp. 646-674. Doi: 10.1016/j.cell.2011.02.013.

Assessment Rubrics:

E	valuation Type	Marks		
End Sem	ester Evaluation	70		
Continuo	us Evaluation	30		
a)	Test Paper	10		
b)	Assignment	5		
c)	Seminar	10		
d)	Viva	5		
	Total	100		

Employability for the Course:

- 1. Biotechnology companies
- 2. Research and Development
- 3. Teaching
- 4. Molecular diagnostics
- 5. Entrepreneurship

VIII SEMESTER

KU8DSCBCH 406: COMPUTATIONAL TECHNIQUES INBIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSC	Advanced	KU8DSC BCH 406	4	75

Learning Approach (Hours/ Week)			Mar	ks Distribut	ion	Duration of
Lecture	Practical/ Internship Tutorial		CE	ESE	Total	ESE (Hours)
3	2	0	25	75	100	2

Course Description:

This course helps students understand how to use computer tools to analyse biological data. They learn to interpret genetic information, study protein structures, and understand how diseases develop. Through practical exercises, students gain skills in data analysis and problem-solving, preparing them for careers in research, healthcare, or life science.

Course Prerequisite: NIL Course Outcomes: Course Learning Outcomes: At the end of the Course, the Student will be able to -

C01	Grasp the basic principles and methodologies of bioinformatics for effective		
	data analysis.		
C02	Learn to proficiently analyse biological sequences and structures using computational tools and techniques		
C03	Develop skills in predicting and interpreting the three-dimensional structures of biomolecules to enhance understanding of their functions.		
C04	Gain practical experience in using bioinformatics software and databases		
C05	Improve critical thinking skills to interpret complex biological data and solve problems effectively		

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2			>	
CO 3		>		
CO 4		>		
CO 5				>

COURSE CONTENTS

MODULE	UNIT DESCRIPTION 1				
	INTRO	DUCTION TO BIOINFORMATICS	15		
	1	Introduction to bioinformatics, historical perspectives, scope and applications of Bioinformatics.			
1	2	Biological databases, primary and secondary sequence databases, Specialised databases, NCBI-GenBank, EMBnet, EMBL, DDBJ, UniProt, PIR, PDB and KEGG			
	3	Data mining of biological databases			
	4	Data submission tools (Webin, Sequin, Bankit) and data retrieval tools (DBGET, BioRS), File format of databases-GenBank Flat files, PIR format			
	SIMIL	ARITY SEARCHING TOOLS	10		
	1	Similarity searching tools: BLAST and FASTA, types and variants of BLAST, Applications of BLAST			
2	2	Sequence and structural alignment: Global and local alignment, Pairwise and multiple sequence alignment, Dynamic programming algorithm- Needleman Wunsch and Smith Waterman, DotPlot, Bioinformatics tools (EMBOSS and Clustal)			
	3	Structural alignment: Superposition and threading			
	4	Molecular phylogenetics: Structural components of phylogenetic trees, Types of phylogram, Steps involved in phylogenetic data analysis- Distance based and character-based methods, Phylogenetic tree evaluation methods			
	MOLE	CULAR MODELING IN DRUG DISCOVERY	10		
3	1	Introduction to molecular modeling in drug discovery-secondary and tertiary structure prediction of proteins.			
3	2	Secondary structure prediction tools- SOPMA and CFSSP.			
	3	Tertiary structure prediction; Homology modeling, Steps involved in homology modeling,			

	4	Bioinformatics tools: SWISSMODEL and Modeller. Molecular Visualization- RASMOL and PyMOL	
	MOLE	CULAR DOCKING	10
	1	Molecular docking: Protein- ligand interactions, Types of docking	
4	2	Steps in docking simulation Protein- ligand docking program: AutoDock tools, Webina	30
	3	Protein-protein docking- Major principles and methodologies	
	4	Protein-protein docking program- Argus lab, PatchDock, HDock server	
		LABORATORY EXPERIMENTS	30
	1	Pairwise and multiple sequence alignment of molecular docking	
_	2	Phylogenetic analysis and construction of a phylogenetic tree using Clustal X	
5	3	Prediction of secondary structure of protein by SOPMA	
	4	Molecular docking (Protein-ligand docking) by Webina	
	5	Prediction of tertiary structure of protein by Swiss Model server	

- 1. Attwood, T.K., and D.J. Parry-Smith. Introduction to Bioinformatics. PEARSON Education Ltd.
- 2. Mount, David W. Bioinformatics: Sequence and Genome Analysis.
- 3. Orengo, C.A., D.T. Jones, and J.M. Thornton. Bioinformatics: Genes, Proteins, and Computers.
- 4. Durbin, Richard, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis.

 $WEBSITES \hbox{:} . \underline{www.drugbank.ca}, \underline{www.ccdc.cam.ac.uk/products/csd/}$

Reference Distribution:

Module Unit	Reference No.
-------------	---------------

	1	1
1	2	2
1	3	2
	4	2
	1	3
2	2	4
2	3	3
	4	2
	1	2
3	2	2
3	3	2
	4	2
	1	1
	2	1
	3	1
	4	1
4	5	1
	6	1
	7	1
	8	1
	9	1

Suggested Readings:

- 5. Daniel. Biostatistics, 8th ed., John Wisley and Sons, 2006.
- 6. Durbin, Richard, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis.
- 7. Baxevaris, A.D. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, edited by B.F. Publication, 1998.
- 8. David W. Bioinformatics: Sequence and Genome Analysis, 2nd ed., CB Spublishers, 2005.

Assessment Rubrics:

Eval	uation Type	Marks
End Semester Evaluation (Theory)		75
End Semester Evaluation(Practical)		0
Continuous Eva	aluation (Theory)	25
a)	Test Paper	10
b)	Assignment	5

c)	Seminar	5
d)	Viva	5
Total		100

Employability for the Course:

- 1. Research Positions.
- 2. Pharmaceutical Industry.
- 3. Healthcare Sector.
- 4. Biotechnology Companies
- 5. Software and Technology Companies

VIII SEMESTER

KU8DSCBCH 407: BIOSTATISTICS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSC	Advanced	KU8DSCBCH 407	4	60

Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Lecture	Practical/ Internship Tutorial		CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Biostatistics plays a crucial role in biochemistry by providing the tools and methods necessary for the analysis and interpretation of experimental data. It helps biochemists make sense of complex biological data, identify patterns, and draw meaningful conclusions from their experiments. Biochemistry involves studying the chemical processes and molecules that occur within living organisms. These studies often generate large amounts of data, ranging from gene expression levels to enzymatic activity and protein structures. Biostatistics enables biochemists to analyse these data sets, assess their reliability, and determine the statistical significance of their findings. By applying statistical techniques, biochemists can identify correlations, establish cause-effect relationships, and determine the probability of observed outcomes occurring by chance. This enables them to draw accurate conclusions, make informed decisions, and design future experiments based on statistical power calculations. Additionally, biostatistics aids in experimental design, helping biochemists determine the appropriate sample sizes, control groups, and randomization techniques. It also

guides the selection of appropriate statistical tests, such as t-tests, ANOVA, regression analysis, or survival analysis, depending on the nature of the data and research question.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning
		Domains
1	Understand data types and data presentations.	
2	Understand the concepts of averages and dispersion of measurement values.	
3	Understand the concept of probability and probability distributions.	
4	Understand the method of testing statistical hypotheses.	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)
Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2			~	
CO 3		~		
CO 4		>		

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	THE M	10	
1	1	Scope of Statistics in Biological and Medical Sciences.	
		Definition of population and sample.	

	2	Collection of data: Primary and secondary data.	
	3	Attributes and variables. Qualitative and quantitative data.	
	4	Types of data: Ungrouped data, grouped data, discrete data and continuous data	
	GRAPI	HICAL AND DIAGRAMMATIC REPRESENTATION	15
	1	Histogram, ogives, simple bar diagrams, and stem and leaf chart.	
2	2	Frequency distribution.	
	3	Inclusive and exclusive methods.	
	4	Cumulative frequency distribution.	
	MEASI	URES OF CENTRAL TENDENCY AND DISPERSION	15
	1	Concept of measures of central tendency	
3	2	Arithmetic mean, median, mode, quartiles, and weighted mean. Definitions and examples for ungrouped as well as grouped data. Properties of arithmetic mean	
	3	Absolute and relative measures, range, quartile deviation, variance, and standard deviation.	
	4	Coefficient of variation (with simple examples)	
	CORR	ELATION AND PROBABILITY	15
	1	Definition and types of correlation between two variables. Scatter diagram. Karl Pearson's coefficient of correlation and Spearman's rank correlation coefficient.	
	2	Definition and examples for ungrouped data.	
4		Probability -Sample space, Event, Elementary event, Compound event, Impossible events, certain events, equally likely events, mutually exclusive events, and exhaustive events.	
	3	Dependent and independent events. Definition of probability. Addition law of probability with illustration.	
	4	Definition of conditional probability. Multiplicative law of probability with illustrative examples.	

5	Teacher Specific Module	5
	Directions	

- 1. Pagano, Marcello, Kimberlee Gauvreau, and Heather Mattie. *Principles of biostatistics*. Chapman and Hall/CRC, 2022.
- 2. Medhi, Jyotiprasad. Statistical methods: an introductory text. New Age International, 1992.
- 3. Bhat, B. R., Srivenkatramana T., and Madhav Rao K. S. Statistics: A Beginner's Text. Vol. I. New Age International (P) Ltd., 1996.
- 4. Ithal, U. B., and Naik B. U. Statistical Methods I. PhadakePrakashan, Kolhapur.
- 5. Ithal, U. B., and Naik B. U. Statistical Methods II. PhadakePrakashan, Kolhapur.
- 6. Gupta, S. C., and V. K. Kapoor. *Fundamentals of mathematical statistics*. Sultan Chand & Sons, 2020.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	3
1	3	7
	4	3
	1	2
2	2	5
	3	3
	4	4
	1	1
3	2	2
3	3	4
	4	5
	1	7
4	2	2
	3	1
	4	3

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuous Evaluation		30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
Total		100

Employability for the Course:

- 1. Biotechnology companies
- 2. Research and Development
- 3. Teaching
- 4. Entrepreneurship

VIII SEMESTER KU8DSCBCH408: INTELLECTUAL PROPERTY RIGHTS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSC	Advanced	KU8DSC BCH 408	4	60

Learning	Approach (Hou	ars/ Week)	Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
4	0	0	30	70	100	2	

Course Description:

- 1.Define and understand the concept of intellectual property.
- 2.Differentiate between various forms of intellectual property, including patents, trademarks, copyrights, and trade secrets.
- 3. Understand the role of organizations like WIPO (World Intellectual Property Organization).
- 4.Explain the basics of patent law, including the criteria for patentability.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Define and explain the fundamental concepts of intellectual property.	
2	Understand the requirements for patentability and demonstrate the ability to analyze and evaluate patent applications.	
3	Understand the principles of trademarks, trade secrets and copyright protection.	
4	Demonstrate an understanding of the legal and trade related aspects of IPR.	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1						>
CO 2						>
CO 3						>
CO 4						>

COURSE CONTENTS

MODULE	UNIT	UNIT DESCRIPTION					
	INTRO (IPR)	DUCTION TO INTELLECTUAL PROPERTY RIGHTS	10				
1	1	Overview of IPR, Types of intellectual property (patents, copyrights, trademarks, trade secrets), Importance of IPR in biotechnology					

	2	Patents in Biotechnology: Basics of patent law, Patentable subject matter in biotechnology	
	3	Patent filing and prosecution process	
	4	Patent infringement and litigation	
	IPR A	ND BIOTECHNOLOGY	15
	1	Copyrights and Biotechnology: Basics of copyright law, Protection of biotechnological works under copyright	
2	2	Trademarks in Biotechnology: Basics of trademark law, Trademarks in the context of biotechnological products	
	3	Trade Secrets in Biotechnology: Definition and importance of trade secrets, Protection of trade secrets in the biotechnology industry	
	4	Geographical Indications and Traditional Knowledge	
	BIOE	THICS AND PLANT GENETIC RESOURCES	15
	1	Ethical issues in research and development	
3	2	Biopiracy, bioprospecting, and access and benefit-sharing agreements	
	3	Introduction to Plant Genetic Resources and IPR, Importance of Plant Genetic Resources, Nagoya Protocol and its principles	
	4	Access and Benefit-Sharing (ABS): ABS agreements and their implications for researchers and breeders	
4		RNATIONAL PERSPECTIVES ON IPR IN ECHNOLOGY	15

	1	International agreements and conventions: GATT, TRIPS, Paris Convention, Budapest treaty, Berne Convention, Patent Cooperation Treaty (PCT), UPOV, Nagoya Protocol.	
	2	Global strategies for protecting biotechnological inventions.	
	3	Comparison of IPR regimes across different countries	
	4	Harmonization efforts and challenges	
5	Teach	er Specific Module	5
3	Directions		

- 1. Universal Law Publishing Co. Intellectual Property Laws: Containing Acts, Rules & Regulations. 2012.
- 2. Bouchoux, Deborah E. Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets. 3rd ed., 2012.
- 3. Chandrashekaran, A. Intellectual Property Law. C. Sitaraman and Co Pvt. Ltd., 2009.
- 4. Cullet, Philippe. Intellectual Property Protection and Sustainable Development. Universal Law Publishing Co., 2008.
- 5. SorapopKiatpongsan. "Intellectual Property and Patent in Stem Cell Research Era." Faculty of Medicine, Chulalongkorn University, vol. 89, no. 11, 2006, pp. 1984-1986.
- 6. Pandey, Neeraj, and Khushdeep Dharni. Intellectual Property Rights. PHI Learning Private Limited, 2011.
- 7. Goel, Deepa, and Shormini Parashar. IPR, Biosafety and Bioethics. Pearson, 2013.

Reference Distribution:

Module	Unit	Reference No.	
	1	2	
1	2	3	
1	3	4	
	4	1	
2 1		6	

	2	2
	3	3
	4	1
	1	3
3	2	3
	3	4
	4	5
	1	6
4	2	1
	3	3
	4	2

Suggested Readings:

- 8. Sople, Vinod V. Managing Intellectual Property: The Strategic Imperative. 4th ed., PHI Learning Private Limited, 2011.
- 9. Parulekar, Ajith, and Sarita D'Souza. Indian Patents Law: Legal and Business Implications. Macmillan Publishers India Ltd., 2009.
- 10. Thakar, Bharti. Intellectual Property Rights in the Emerging Business Environment. The ICFAI University Press, 2006.

Assessment Rubrics:

E	Evaluation Type	Marks		
End Sem	ester Evaluation	70		
Continuo	us Evaluation	30		
a)	Test Paper	10		
b)	Assignment	5		
c)	Seminar	10		
d)	Viva	5		
	Total	100		

Employability for the Course:

- 1. Patent and Trademark Attorney.
- 2. IP Solicitor.
- 3. Litigation.
- 4. Paralegal.
- 5. Freelancing.
- 6. Teaching.
- 7. Content Writing.

KU8DSEBCH404: DEVELOPMENTALBIOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSE	Advanced	KU8DSEBCH404	4	60

Learning App	Marks Distribution			Duration of			
Lecture	Practical/ Internship	Tutorial	СЕ	ESE	Total	Duration of ESE (Hours)	
4	0	0	30	70	100	2	

Course description

The course help to understand production of gametes, fertilization, development of the embryo, emergence of the adult organism, senescence, and death. Developmental biology aims to understand how an organism develops—how a single cell becomes an organized grouping of cells that is then programmed at specific times to become specialized for certain tasks. Developmental biology is the science that investigates how a variety of interacting processes generate an organism's hetero generous shapes, size and structural features that a rise on the trajectory from embryo to adult, or more generally throughout a life cycle.

Course prerequisite: NIL

Course outcome

CO	Expected Outcome	Learning Domains
CO No.		
1.	Understand the reproduction and reproductive parts of plants.	
2.	Understand the sexual reproduction in animals.	
3.	Understand the cellular changes in the zygote and early, late	
	and post fertilization events	
4.	Understand applications of developmental biology	

 $*Remember\ (R)\ ,\ Understand\ (U),\ Apply\ (A),\ Analyse\ (An),\ Evaluate\ (\ E),\ Create\ (C)$

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		>		
CO 3			~	
CO 4				>
CO 5				>

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
1		PLANT DEVELOPMENT	10
	1	Microsporangium–Microsporogenesis and male gametophyte, pollen's structure.	
	2	Megasporangium-Megasporogenesis and female gametophyte, structureof Female embryo sac.	
	3	Pollination. Fertilization—Pollen-Pistil interaction, double fertilization, triple fusion.	
	4	Polyembryony, Apomixes, Parthenocarpy, Parthenogenesis.	
2	EARI	LY EMBRYONIC DEVELOPMENT	15
	1	Gametogenesis-Oogenesis and Spermatogenesis. Structure of Ovum and Sperm.	
	2	Fertilization—mechanism of fertilization; recognition of egg and sperm, acrosome reaction, cortical reaction, changes in gametes, blocks to polyspermy.	
	3	Different types of eggs and patterns of cleavage –types of cleavage based on planes (meridional, vertical, Equatorial and Latitudinal), based on amount of yolk	

	(Holoblastic & Meroblastic), based on devt. (Determinate & Indeterminate) and based on Pattern (Radial & Spiral). Stages of development–Zygote, Blastula (types of blastula), Morula, Gastrula (major events in gastrulation), Notogenesis, Neurulation and Mesogenesis.	
3	LATE AND POSTEMBRYONIC DEVELOPMENT	15
	Cell-cell communication in development (induction, competence, instructive and permissive interactions, epithelial mesenchymal interactions, paracrine factors).	
	Fate of germ layers and extra embryonic membrane.	
	Implantation of embryo in humans.	
	Placenta (Structure, and functions of placenta).	
4	IMPLICATIONS OF DEVELOPMENTA LBIOLOGY	15
	Teratogenesis: Teratogenic agents and their effects on embryonic development.	
	2 Invitro fertilization.	
	Observation of blastula and gastrula.	
	Pollengrains of Hibiscus, Balsum and Datura	
5	Teacher Specific Module	5
	Directions	

- 1. Gilbert, Scott F., John M. Opitz, and Rudolf A. Raff. "Resynthesizing evolutionary and developmental biology." *Developmental biology* 173.2 (1996): 357-372.
- 2. Mitchell, Barry, and Ram Sharma. *Embryology: Embryology E-Book*. Elsevier Health Sciences, 2012.
- 3. Balinsky, B. I., and Fabian B. C. An Introduction to Embryology. 5th ed., International Thompson Computer Press, 1981.
- 4. Carlson, John B., and Nels R. Lersten. "Reproductive morphology." *Soybeans: improvement, production, and uses* 16 (2004): 59-95.
- $5. \ \ \, \text{Kalthoff. Analysis of Biological Development. } 2^{nd} \, \text{ed., McGraw-Hill Publishers, 2008.}$

Reference Distribution

MODULE	UNIT	1
	1	4
	2	3
1	3	2
	4	4
	1	3
	2	2
2	3	1
	4	4
	1	3
	2	1
3	3	2
	4	3
	1	1
	2	2
4	3	3
	4	2

Suggested readings

- 1. Verma, P. S., and V. K. Agarwal. Chordate Embryology. S. Chand Publishing, 1975.
- 2. SS, Bhojwani, S. P. Bhatnagar, and P. K. Dantu. *The embryology of angiosperms*. Vikas Publishing House, 2015.
- 3. SS, Bhojwani, S. P. Bhatnagar, and P. K. Dantu. *The embryology of angiosperms*. Vikas Publishing House, 2015.
- 4. Wolpert, Lewis. Principles of Development. 2nd ed., Oxford University Press, 2002.

Assessment Rubrics

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1.Academic Researcher.
- 2. Scientific Laboratory Technician.
- 3. Medical Researcher.
- 4.Cell Biologist.
- 5.Stem Cell biologist.

KU8DSE BCH 405: STEM CELL AND REGENERATIVE BIOLOGY

S	emester	Course Type	Course Level	Course Code	Credits	Total Hours
	VIII	DSE	Advanced	KU8DSE BCH 405	4	60

Learning Approach (Hours/ Week)			Marks Distribution			Describe a SESE		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)		
4	0	0	70	30	100	2		

Course description:

This course will introduce students to stem cells and its application. Basic stem cell discoveries and their potential clinical application will be discussed.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Overview of stem cell biology	
2	Knowledge of various types of stem cells and their characteristics	
3	Learn about tissue and organ development	
4	Understand the molecular basis of pluripotency	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

Mapping of Course Outcomes to PSOs

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		>		
CO 3			>	

CO 4		>
CO 5		>

MODULE	UNIT DESCRIPTION				
	INTROI	DUCTION TO STEM CELLS	10		
	1	Definition and Criteria for Stem Cells			
1	2	Pluripotent, Multipotent and Totipotent Stem cells			
	3	Primordial germ cells, Embryonic stem cells			
	4	Amniotic fluid derived stem cells			
	STEM C	CELL BIOLOGY AND MECHANISMS	15		
	1	Molecular Basis of Pluripotency			
2	2	Mechanisms of Self Renewal, Role of LIF/JAK/STAT, Nodal/Activin/TFGβ, FGF/MAP kinase pathways			
	3	Chromatin signature of pluripotent cells, Cell cycle regulators in Stem cells			
	4	Stem cell niches, change of phenotype and differentiation, Senescence of Dividing somatic cells, ageing and stem cell renewal, Quiescent Stem Cells.			
	TISSUE	AND ORGAN DEVELOPMENT	15		
	1	Differentiation in early development, Potency, Commitment, Polarity			
3	2	Specification of asymmetric divisions, induction, competence determination and differentiation			
	3	Morphogenetic gradients, cell fate and cell lineages, Epigenetic silencing and lineage commitment			
	4	Cellular differentiation of the nervous system, Progenitors in adult brain, Epithelial stem cells			
	5	Adult progenitor cells, Mesenchymal stem cells, Plasticity; De-differentiation, Cancer stem cells.			
	STEM C	CELL TECHNOLOGY	15		
4	1	Characteristics and characterization of Human Pluripotent			

		Cells	
	2	Fluorescence and Magnetic bead assisted cell sorting	
	3	Derivation, characterization and maintenance of Murine and Human Embryonic Stem Cells, Differentiation of embryonic stem cells	
	4	Derivation of induced pluripotent stem cells; Derivation and differentiation of Human Embryonic Germ Cells; Genomic Reprogramming, Fate Mapping of Stem Cells.	
5	Teacher S	Specific Module	5
	Direction	S	

- 1. Lanza, R., and Atala, A. Essentials of Stem Cell Biology. Academic Press, 2013.
- 2. Huang, N.F., L'Heureux, N., and Song, L. Engineering Stem Cells for Tissue Regeneration. World Scientific Publishing Company, 2018
- 3. Scott, C.T. Stem Cell Now. Pearson Education, 2006.
- 4. Marshak, D.R., Gardner, R.L., Gottlieb, D., Lanza, R., and Atala, A. (Eds.) Stem Cell Biology. Cold Spring Harbor Press, 2001.

Reference Distribution:

Module	Unit	Reference No.
	1	3
1	2	3
1	3	2
	4	2
	1	3
2	2	2
2	3	1
	4	1
	1	2
	2	1
3	3	1
	4	3
	5	2
4	1	3

2	1
3	2
4	3

Assessment Rubrics:

F	Evaluation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d) Viva		5
	Total	100

Employability for the course/Programme

- 1.Research and development
- 2.Biotechnology Industry

VIII SEMESTER

KU8 DSE BCH406: ENVIRONMENTAL BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VIII	DSE	Advanced	KU8 DSE BCH406	4	60

Learning Approach (Hours/ Week)			Mar	ks Distribut	ion	Duration of
Lecture	Practical/ Internship Tutorial		CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Biochemistry is used in Environmental Science when understanding the environment's effect on living organisms as they interact with environmental pollutants. The pollutants sometimes referred to as xenobiotics can be ingested, inhaled or absorbed through the skin. Using biochemistry, it is possible to study how the different pollutants behave once they are in the body. Where they are transformed, eliminated or stored and how this can affect the different biological process of a normally functioning organism. Xenobiotics studies include pesticides, hazardous wastes, synthetic and natural compounds. The major environmental issues such as global warming, air and water

pollution, and energy crisis, need our immediate attention. Major topics include biomass, bioremediation, microbial metabolism for reduction of carbon dioxide, recovery of precious metals from electronic wastes, algae for biofuel production, chemical and biological fixation of CO_2 into useful products, waste water treatment and CO_2 emissions, monitoring and treatment of water.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	understand the basic concepts of ecosystem and environmental problems	
2	Understand the different types of pollution, measurement and control	
3	Understand the Biopesticides in integrated pest management	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		>		
CO 3			>	
CO 4				>
CO 5				>

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
1	ECOSY	YSTEM AND GLOBAL ENVIRONMENTAL PROBLEMS	10

15
15
15

	2 Bioremediation of contaminated soils and wastelands		
	3 Solid waste - sources and management (composting, vermiculture and methane production)		
	4	Environmental mutagenesis and toxicity testing.	
5	Teacher	Specific Module	5
3	Directio	ns	

- 1. Manahan, Stanley E. Environmental Chemistry. CRC Press, 2009.
- 2. Odum, Eugene Pleasants, Howard T. Odum, and Joan Andrews. Fundamentals of Ecology. Saunders, 1971.
- 3. Hutzinger, Otto, editor. The Handbook of Environmental Chemistry. Springer Science & Business Media, 1980.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	2	3
1	3	5
	4	2
	1	6
2	2	4
2	3	3
	4	2
	1	1
3	2	4
3	3	2
	4	1

	1	5
4	2	6
	3	2
	4	1

Suggested Readings:

- 4. Harbison, Raymond D., Marie M. Bourgeois, and Giffe T. Johnson. Hamilton and Hardy's Industrial Toxicology. John Wiley & Sons, 2015.
- 5. Landis, Wayne G., and Ming-Ho Yu. Introduction to Environmental Toxicology: Impacts of Chemicals upon Ecological Systems. CRC Press, 2003.
- 6. Lu, Frank C. "Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment." Taylor & Francis, 1996.

Assessment Rubrics:

F	Evaluation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	10
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 4. Quality control analysis
- 5. Biotechnology Industry

GENERAL FOUNDATION COURSES: BIOCHEMISTRY

SKILL ENHANCEMENT COURSES (SEC)						
Semester	Course Code Name of the course Credits					
			Theory	Practical	Total	
	KU 4 SEC BCH 201	MEDICAL BIOCHEMISTRY				
IV			2	1	3	

		FOOD ADULTERATION AND			
V	KU 5 SEC BCH 202	ANALYSIS TECHIQUES	2	1	3
		BASIC BIOCHEMICAL			
VΙ	KU 6SEC BCH 301	TECHNIQUES	2	1	3

KU4SECBCH201: MEDICAL BIOCHEMISTRY

Semeste	er Course Type	Course Level	Course Code	Credits	Total Hours
IV	SEC	Intermediate	KU4SEC BCH 201	3	60

Learning	Learning Approach (Hours/ Week)			Approach (Hours/ Week) Marks Distribution		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)
2	2	0	25	50	75	1.5

Course Description

Clinical biochemistry is a discipline of medicine that studies biological fluids and tissues to diagnose and monitor disorders. This course often includes subjects such biochemical pathways, enzyme kinetics, metabolism, hormone control, and the use of biomarkers in health and illness. Students study laboratory procedures for testing blood, urine, and other body fluids in order to assess organ function, discover anomalies, and monitor therapy efficacy. Furthermore, the course frequently covers topics such as test result interpretation, quality control methods, and the application of biochemical concepts in clinical practice.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understanding the fundamental principles of biochemistry as they relate to human physiology and pathology.	
2	Learning the biochemical pathways and metabolic processes involved in normal cellular function and how they are altered in disease states.	
3	Gaining proficiency in laboratory techniques for analysing biological fluids and tissues to diagnose and monitor diseases.	
4	Applying biochemical knowledge and skills to contribute to evidence-based medical decision-making and patient management strategies.	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	*	>		
CO 2	*			
CO 3		>		
CO 4			~	~

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	INTRO	DUCTION TO CLINICAL BIOCHEMISTRY	10
	1	Introduction: Definition and scope of clinical biochemistry in diagnosis, use of clinical laboratory and interpretation of results	
1	2	Specimen Collection: Types of Specimens, Method of specimen collection (Blood, serum, Urine and stool)	
	3	Pre-analytical & analytical variables, Use of preservatives in specimen collection, Use of proper Anticoagulants in specimen collection	
	HAEM	ATOLOGY	15
2	1	Haematology: Blood Cells-Normal Values. Importance of RBC – Indices, WBC, Platelets and ESR	
	2	Lipid profilesignificance	
	3	Glucose tolerance tests- Clinical significance	
	ВІОСН	EMICAL ANALYSIS-I	15
3	1	Biochemical analysis of urine: Heat & acetic acid test, Benedict's test, Fouchet's test, Hay's test	
	2	Hematology: Determination of hemoglobin, Erythrocyte sedimentation rate, Clotting time	

	3	Biochemical analysis of blood: Glucose, Total protein, Cholesterol	
	BIOCE	IEMICAL ANALYSIS -II	15
4	1	Total count of RBC using haemocytometer.	
-	2	Differential count of WBC using haemocytometer	
	3	Determination of human blood group antigens.	
5	Teache	r Specific Module	5
	Directio	ons	

Reference Distribution:

Module	Unit	Reference No.
	1	5
1	2	5
1	3	1
	4	3
	1	3
2	2	1
	3	4
	1	5
3	2	5
	3	5
	1	11
	2	10
	3	10
4	4	9
	5	9
	6	9
	7	9

Essential Readings:

- 1. Bangert, Stephen K., and William J. Marshall, eds. *Clinical biochemistry: metabolic and clinical aspects*. Churchill Livingstone, 1995.
- 2. Ahmed, Nessar, ed. Clinical biochemistry. Oxford University Press, 2017.
- 3. Davis, Anil. *Evaluation of Serum Lipid Profile in Pregnancy Induced Hypertension*. Diss. Rajiv Gandhi University of Health Sciences (India), 2010.
- 4. Singh, Randhir. Introductory practical biochemistry. Alpha Science Int'l Ltd., 2000.
- 5. Sadasivam, S., & Manickam. Biochemical Methods. New Age International (P) Ltd., 1996.

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation (ESE)	50(35T+15P)
Continuo	us Evaluation (CCA)	25(15T+10P)
Theory		15
a)	Test Paper	9
b)	Assignment	3
c)	Seminar	3
Practical		10
a) R	ecord	5
b) V	iva	5
Total		75

Abbreviations: T-Theory/ P-Practical

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 4. Quality control analysis
- 5. Microbial, Biotechnology and Pharmaceutical Industry

KU5SECBCH 202: FOOD ADULTERATION AND ANALYSIS TECHNIQUES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	SEC	Intermediate	KU 5 SEC BCH 202	3	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
2	2	0	25	50	75	1.5

Course Description:

- Basic knowledge regarding Food adulteration and food additives
- To exemplify different food adulterants
- To elucidate the adulterants in food products

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning
CO No.	Expected Outcome	Domains
1	Understand the adulteration of common foods and their adverse	
	impact on health	
2	Comprehend certain skills of detecting adulteration of common	
	foods.	
3	Be able to extend their knowledge to other kinds of adulteration,	
	detection and remedies.	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~	>		
CO 2	~			
CO 3		>		
CO 4			~	~

COURSE CONTENTS

MODULE	UNIT	DESCRIPTION	HOURS
	FOOD .	ADDITIVES AND ADULTERATION	10
	1	Food adulteration: Definition, incidental and intentional adulteration.	
1	2	Common adulteration in foods, health hazards and risks.	
	3	Introduction to quality aspects related to food and food products.	
	4	Food Additives: Antioxidant, preservatives, nutrient supplements, emulsifiers, thickening agents, sweeteners, colouring and flavouring agents.	
2	ADULT	TERATION OF GHEE AND OIL	15

	1	Test for vegetable fat: Nitric acid test, Soda ash test and Valenta test	
	2	Test for added alkali. Baudouin test.	
	3	Analysis of butter: Test for Dalda in butter.	
	4	Adulteration of Paneer: Presence of starch in paneer.	
	5	Test for sesame oil in other oils Test for added mineral oil	
	6	Halphen test for cottonseed oil	
		Hexa bromide test for linseed oil	
	7	Test for added castor oil and Detection of argemone oil in other oils	
	8	Test for rancidity in oils, Kries test for testing quality of oil.	
	TESTI	NG ADULTERATION OF MILK	15
	1	Physical Tests: Detergent Test, Filter Test, Flow Test	
3	2	Chemical Tests: Clot on boiling test.	
	3	Detects the presence of added carbonates and bicarbonates in milk	
	4	Test for starch, soda and glucose in milk	
	TESTI	NG ADULTERATION OF SPICES	15
	1	Coriander powder: Test for starch & horse dung power.	
	2	Chili powder: Test for oil soluble dyes, powdered bran, saw dust and brick powder.	
4	3	Turmeric Powder: Test for metanil yellow and lead chromate polish.	
	4	Cloves: Test for exhausted cloves.	
	5	Curry powder: Test for metallic colors.	
	6	Pepper: Test for papaya seeds	
5	Teache	er Specific Module	5
3	Direction	ons	
	1		

- 1. Warner, J.M. Principles of Diary Processing. 1976, Wiley Eastern Ltd., New Delhi.
- 2. Sreelakshmi. Food Science. 1997, New Age International Pvt. Ltd., New Delhi.
- 3. Jha, Shyam Narayan. Rapid Detection of Food Adulterants and Contaminants: Theory and Practice. 2015.

Reference Distribution:

Module	Unit	Reference No.
	1	2
1	2	2
1	3	2
	4	2
	1	3
	2	3
	3	3
2	4	3
	5	3
	6	3
	7	3
	8	3
	1	3
3	2	3
3	3	3
	4	1
	1	3
4	2	3
	3	3
	4	3

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation (ESE)	50(35T+15P)
Continuo	us Evaluation (CCA)	25(15T+10P)
Theory		15
a)	Test Paper	9

b)	Assignment	3
c)	Seminar	3
Practical		10
c) Record		5
d) Viva		5
Total		75

Abbreviations: T-Theory/ P-Practical

Employability for the Course:

• Food Industry

KU6SECBCH301: BASIC BIOCHEMICAL TECHNIQUES

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
VI	SEC	Higher	KU 6 SEC BCH301	3	60

Learning Approach (Hours/ Week)			Marks Distribution			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
2	2	0	25	50	75	1.5

Course Description:

The biochemical & biophysical techniques encompass a range of processes, including Protein Purification, perfusion, Homogenization, Differential Centrifugation, Purification of LDH, LDH Enzyme assays, Protein assays, Characterization of LDH, Western blotting, Gel filtration chromatography, Protein crystallography, PCR, Ligation and transformation, Selection and screening and Enzyme Kinetics.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
		Domains
1	To explain the principle and function of various instruments in	
	biochemistry	
2	To interpret about working methods of various type Microscope.	
3	To understand different type of separation techniques.	

4	To analyse detailed working and applications of chromatography	
	and electrophoresis	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~	>		
CO 2	~			
CO 3		~		
CO 4			>	~

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	UNIT DESCRIPTION				
	CENTRI	FUGALTECHNIQUES	10			
	1	Centrifugation-Principle and Components				
1	2	Classification				
	3	Instrumentation of various types of centrifuges				
	4	Sedimentation Techniques-Differential, density gradient and ultra-centrifugation				
	ELECTR TECHNI	ROPHORETIC AND CHROMATOGRAPHIC QUES	15			
	1	Electrophoresis-Theory and Principle				
2	2	Electrophoretic techniques-Paper, Agarose gel, SDS-PAGE, immune electrophoresis, isoelectric focusing, Density gradient gel electrophoresis(DGGE), Gel documenter				
	3	Chromatography-Principle and types: Paper, TLC, ion exchange, gel filtration, affinity, GLC and HPLC	-			
3	SPECTROSCOPICTECHNIQUES					
3	1	Spectroscopy-Laws of light absorption –Beer lamberts law				

	2	UV and visible spectroscopy: Working and application of	
		UV and visible spectroscopic techniques	
	3	Principle and application of NMR, ESR spectroscopy,	
		mass spectroscopy, fluorescent and emission	
		spectroscopy,	
	LABORA	ATORY EXPERIMENTS	15
	1	Standardization of pH meter	
4		Measurements of pH of solutions using pH meters	
	2	Separation of amino acids by Paper chromatography	
	3	Separation of Pigments by TLC	
	4	Separation of pigments by column chromatography	
	5	DNA and RNA quantitation using spectrophotometer	
	6	Agarose gel electrophoresis of DNA	
	7	Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis	
		of proteins	
5	Teacher S	Specific Module	5
	Direction.	S	

- 1. Banerjee, Pranab Kumar. Introduction to Biophysics. S. Chand & Company, 2008.
- 2. Roy, R. N. A Textbook of Biophysics. New Central Book Agency, 2001.
- 3. Upadhyay, Upadhyay, and Nath. Biophysical Chemistry. Himalaya Publishing House, Bangalore, 2019
- 4. Allen, James P. Biophysical Chemistry. Wiley Blackwell, New Jersey, 2008.
- **5.** Wilson, K., and J. Walker. Principles and Techniques of Biochemistry and Molecular Biology. Cambridge University Press, Cambridge, 2010.

Reference Distribution:

Module	Module Unit Reference N		
	1	5	
1	2	5	
1	3	1	
	4	3	

	1	3
2	2	1
	3	4
	1	5
3	2	5
	3	5
	1	11
	2	10
	3	10
4	4	9
	5	9
	6	9
	7	9

Suggested Readings:

- 6. Horst, F. Basic One and Two-dimensional NMR Spectroscopy. Wiley-VCH, 2010, New Jersey.
- 7. Murphy, D.B., and Davidson, M. Fundamentals of Light Microscopy and Electron Imaging. Wiley-Blackwell, 2012, New Jersey.
- 8. Freifelder, D.M. Physical Biochemistry: Applications to Biochemistry and Molecular Biology. Vol. 1. Freeman, 1983, New York.
- 9. Sambrook, J., & Russell, D.W. Molecular Cloning, Vol. 1-3 (3rd edition). CSHL Press, 2000.
- 10. Sadasivam, S., & Manickam, A. Biochemical Methods, 3rd edition. 2010.
- 11. Plummer, David. Practical Biochemistry

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation (ESE)	50(35T+15P)
Continuo	us Evaluation (CCA)	25(15T+10P)
Theory		15
a)	Test Paper	9
b)	Assignment	3
c)	Seminar	3
Practical		10
e) R	ecord	5
f) Viva		5
Total		75

Abbreviations: T-Theory/ P-Practical

Employability for the Course:

- 1. Biochemical companies
- 2. Research and development
- 3. Teaching
- 4. Quality control analysis
- 5. Microbial, Biotechnology and Pharmaceutical Industry

		VALUE ADDED COURSES (VAC)			
Semester	Course code	Name of the course		Credits	
			Theory	Practical	Total
III	KU3VAC BCH 201	HEALTH & NUTRITION	3	-	3
IV	KU4VAC BCH 202	MEDICINAL PLANTS	3	-	3
TV	WHANA C DON 201	FOOD SAFETY AND QUALITY	2		2
IV	KU4VAC BCH 301	CONTROL	3	-	3

KU3VACBCH201: HEALTH AND NUTRITION

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	VAC	Intermediate	KU3VACBCH201	3	45

Learning Approach (Hours/ Week) Marks Distribution						Duration of ESE	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
3	0	0	25	50	75	1.5	

Course Description:

Nutritional biochemistry contributes to advancements in food science and technology by providing insights into the nutritional composition of foods, the effects of food processing on nutrient bioavailability, and the development of functional foods enriched with bioactive compounds for health promotion. Overall, nutritional biochemistry plays a vital role in promoting health, preventing diseases, and improving the quality of life through a better understanding of the relationship between nutrients and human physiology. Nutrients are chemical substances required by the body to sustain basic functions and are optimally obtained by eating a balanced diet. There are six major classes of nutrients essential for human health: carbohydrates, lipids, proteins, vitamins, minerals, and water. Carbohydrates, lipids, and proteins are considered macronutrients and serve as a source of energy. Water is required in large amounts but does not yield energy. Vitamins and minerals are considered micronutrients and play essential roles in metabolism.

Course Prerequisite: NIL

Course Outcomes:

CO No. Expected Outcome	Learning
-------------------------	----------

		Domains
1	To know the basic concept of nutrition	
2	To explain the nutritional role of carbohydrates and lipids	
3	To study the nutritional aspects of proteins	
4	To understand the nutritional aspects of vitamins	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	*	>		
CO 2		>		
CO 3			~	
CO 4	~			>

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	NUTRI	TION	10
	1	Concepts of macronutrients and micro nutrients.	
1	2	Physiological fuel value and Daily requirement of energy	
	3	High and low-calorie diets.	
	4	Basal metabolic rate (BMR) and factors affecting BMR.	
	NUTRIT	IONAL ASPECTS OF CARBOHYDRATES AND LIPIDS	10
2	1	Nutritional aspects of the carbohydrates- Different dietary types, source deficiency	
_	2	Nutritional aspects of the lipids, - Different dietary types, source, deficiency	
	3	Essential fatty acids-Source and its importance	

	NUTRITIONAL ASPECTS OF PROTEINS			
	1 Nutritional cla	assification of amino acids		
3	2 Nutritional cla	assification of proteins		
	3 Essential amir	no acids -sources and functions		
	4 Protein Energy	y Malnutrition		
	NUTRITIONAL SIGNIE	FICANCE OF MINERALS AND VITAMINS	10	
	1 Nutritional sig Na & K	gnificance. Dietary Macro elements: Ca, P, Mg,		
4	2 Dietary Micro	elements: Iron, Iodine, Zinc, Copper etc.		
	3 Nutritional sig	gnificance- fat soluble vitamins		
	4 Nutritional sig	gnificance- water soluble vitamins		
5	Teacher Specific Modu	nle	5	
3	Directions			

- 1. Akoh, Casimir C. Food Lipids: Chemistry, Nutrition, and Biotechnology. 4th ed., CRC Press Taylor & Francis Group, 2016.
- 2. Mann, Jim, and A. Stewart Truswell. Essentials of Human Nutrition. 2nd ed., Oxford University Press Inc., 2002.
- 3. Rodwell, Victor, et al. Harper's Illustrated Biochemistry. 31st ed., Tata McGraw Hill Education, 2018.
- 4. Underwood, E. Trace Elements in Human and Animal Nutrition. 4th ed., Academic Press, 1977.
- 5. Bamji, MS., Kamalakrishnaswamy, and G.N.V. Brahmam. The Book of Human Nutrition. 4th ed., Oxford & IBH Publishing, 2017.
- 6. Swaminathan, M.S. Essentials of Food and Nutrition. Vol. 1 and 2, Ganesh & Co., 1974.
- 7. Trueman, Patricia. Nutritional Biochemistry. Mjp Publishers, 2007

Reference Distribution:

Module	Unit	Reference No.
1	1	7
	2	7

	3	2
	4	2
	1	3
2	2	5
	3	2
	1	2
3	2	2
3	3	2
	4	2
	1	9
4	2	9
•	3	10
	4	10

Suggested Readings:

- 8. Mahan, L.K., and S.E. Srrings. Krause's Food and Nutrition Care Process. 2012, Raymond, J., Elsevier's Publications, ISBN-978-1-4377-2233-8.
- 9. G.F. Coombs Jr. The Vitamins: Fundamental Aspects in Nutrition and Health. 2008, Elsevier's Publications, ISBN-13-978-0-12-183493-7.
- 10. Gibson, Rosalind. Principles of Nutritional Assessment. 2005, University Press.

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation	50
Continuo	ous Evaluation	25
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d) Student extension activity		5
Total		75

Employability for the Course:

- 1. Food industries
- 2. Research and Development
- 3. Teaching
- 4. Dietitians
- 5. Entrepreneurship
- 6. Food testing lab- technicians

KU4VACBCH202: MEDICINAL PLANTS

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
IV	VAC	Intermediate	KU4VACBCH202	3	45

Learning	Approach (Hou	Marks Distribution			Duration of	
Lecture	ecture Practical/ Internship Tutorial		CE	ESE	Total	ESE (Hours)
3	0	0	25	50	75	1.5

Course Description:

- Basic knowledge regarding Medicinal plants
- To elucidate the conservation of medicinal plants
- To exemplify different classes of drugs originated from plants

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand the significance of medicinal plants of ethno-medicine in modern research.	
2	Familiarize highly valuable medicinal plants for medicinal uses.	
3	Analyse conservation of medicinal plants	
	Understand the cultivation of medicinal plants	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~	~		
CO 2	~			
CO 3		~		
CO 4			>	~

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	INTRO	DUCTION TO MEDICINAL PLANTS	10
1	1	Introduction to Herbal Medicines: Principles of identifying medicinal plants.	
1	2	Basics of the botanical description – basic principles of morphology and taxonomy.	
	3	Plants as medicines in Ayurveda – Unani – Siddha and Homeopathy Ethno botany	
	BASIC	S OF ETHNOBOTANY	10
	1	Ethnobotany- definition- categories	
2	2	Major tribes of south India- regional studies	
2	3	Ethnomedicinal plants- wild food plants- socio-economic status	
	4	Major Indian plants known as Antiseptic, Anti-allergic and Expectorants, digestive problems liver, remedies and Nerve tonics	
	IMPOR	RTANCE OF MEDICINAL PLANTS	10
3	1	Importance and conservation of medicinal plants – Insitu, exsitu, sacred groves.	
	2	Role of ICAR, IMPB, BSI, NBPGR and FRLHT in	
	3	conservation and cultivation of medicinal plants. IPR issues	
	CULTI	VATION OF SELECTED MEDICINAL PLANTS	10
	1	A general account of the methodology of cultivation of medicinal plants: Rhizome – Curcuma, Ginger	
4	2	A general account of the methodology of cultivation of medicinal plants: Tuber- <i>Allium cepa</i>	
	3	A general account of the methodology of cultivation of medicinal plants: Twigs- Adhathoda vasica, Catharanthus roseus, Phyllanthus amarus, Andrographis paniculata	

	4	A general account of the methodology of cultivation of	
		medicinal plants: Leaves – Aloe vera, Centella asiatica.	
5	Teacher	r Specific Module	5
	Directio	ons	

- 1. 1.Sharma, Santosh, and A. S. H. W. A. N. I. Kumar. "Tribal uses of medicinal plants of Rajashthan: Kachnar." *Int J Life Sci Pharma Res* 2.4 (2012): 69-76
- 2. 2.Panda, H. *Handbook on herbal drugs and its plant sources*. NATIONAL INSTITUTE OF INDUSTRIAL RE, 2002

Further Reading:

- 1. Panigrahi, Ashok Kr, and Alaka Sahu. *Glossary of useful and economically important plants*. New Central Book Agency, 2020..
- 2. Warrier, Panniyampally Krishna. *Indian medicinal plants: a compendium of 500 species*. Vol. 5. Orient Blackswan, 1993.
- 3. Nair, C. K. N., and N. Mohanan. "Medicinal Plants of India: with special reference to Ayurveda." (*No Title*) (1998).

Reference Distribution:

Module	Unit	Reference No.
	1	2
1	2	2
1	3	2
	4	2
	1	3
	2	3
	3	3
2	4	3
2	5	3
	6	3
	7	3
	8	3
	1	3
3	2	3
3	3	3
	4	1
4	1	3

2	3
3	3
4	3

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation	50
Continuo	ous Evaluation	25
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d) Student extension activity		5
Total		75

Employability for the Course:

• Medicinal plant research

KU5 VAC BCH 301: FOOD SAFETY AND QUALITY CONTROL

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
V	VAC	Foundation	KU5VACBCH301	3	45

Learning Approach (Hours/ Week)		Marks Distribution		Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3	0	0	25	50	75	1.5

Course Description:

To learn the significance of food safety, food quality and food laws and regulations. To gain knowledge about the basic aspects of public health and food safety and quality surveillance system

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning
--------	------------------	----------

		Domains
1	To familiarize students to apply protocol for safe food	
	handling techniques, water and waste management	
2	To understand the role of food packaging and the importance	
	of Nutrition labelling	
3	To analyse consequences of food poisoning and infection on	
	the health of individuals	
4	To Understand the basic principles food laws and regulations	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~	~		
CO 2	~			
CO 3		~		
CO 4			>	~

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS	
	FOOD SAFETY CONCEPT			
	1	Significance of food safety in the food processing industry		
1	2	Risk classification		
	3	National and International food regulatory agencies		
	4	General food laws and food safety regulations, Nutritional		
		labeling regulation.		
	FOOD	SAFETY PROGRAMS	10	
	1	Definitions and importance - Good Manufacturing Practices		
2		(GMPs), Facility Maintenance, Personal Hygiene, Supplier		
		control		
	2	Sanitary Design of Equipment and Infrastructure,		

	3	Procedures for Raw Material reception	
	4	Storage and Finished Product Loading	
	5	Sanitation Program. (Sanitation Standard Operating Procedures (SSOPs)	
	HAZA	RD ANALYSIS AND RISK ASSESSMENT	10
	1	Physical hazards (metals, glass, etc)	
3	2	Chemical hazards (food additive toxicology, natural toxins, pesticides, antibiotics, hormones, heavy metals and packaging components)	
	3	Biological hazards (epidemiology of biological pathogens: virus, bacteria and fungi)	
	4	Evaluation of the severity of a hazard Controlling Food Hazards. Hazard Analysis Critical Control Point (HACCP) system.	
	FOOD	HYGIENE PROGRAMS AND FOOD LAWS	10
	1	Personal hygiene, Training programs, Infrastructure, Personal habits and Hygiene verification	
4	2	Water in the food industry- Water sources, Water uses, Water quality and Treatments	
	3	Cleaning and sanitation- cleaning agents, Sanitizing agents, Equipment and systems	
	4	Food Laws and Regulations; Structure, organization and duties of regulatory system	
5	Teache	er Specific Module	5
	Direction	ons	

- 1. Food Safety and Standards Act, 2006, Rules 2011, Regulations, 2011. 10th ed., ILBCO India, Indian Law Book Company, 2013.
- 2. Early, R. Guide to Quality Management Systems for the Food Industry. 1995, Blackie, Academic and Professional, London.
- 3. Gould, W.A. and Gould, R.W. Total Quality Assurance for the Food Industries. 1998, CTI Publications Inc., Baltimore.
- 4. Pomeraz, Y. And Meloan, C.E. Food Analysis: Theory and Practice. 1996, CBS Publishers and Distributors, New Delhi.

Reference Distribution:

Module	Unit	Reference No.
	1	1
1	3	4
1	3	4
	4	1
	1	3
	3	6
2	3	5
	4	2
	5	1
	1	2
3	2	1
3	3	2
	4	5
	1	2
4	2	4
	3	5
	4	5

Suggested Readings:

- 5. Bryan, F.L. Hazard Analysis Critical Control Point Evaluations: A Guide to Identifying Hazards and Assessing Risks Associated with Food Preparation and Storage. 1992, World Health Organization, Geneva.
- 6. Kirk, R.S. and Sawyer, R. Pearson's Composition and Analysis of Foods. 9th ed., 1991, Longman Scientific and Technical, England.
- 7. FAO. Manuals of Food Quality Control. 2-Additives Contaminants Techniques. 1980, Rome.

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation	50
Continuo	us Evaluation	25
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Student extension activity	5
Total		75

Employability for the Course:

1. Entrepreneurship

2. Food Quality Control

MULTIDISCIPLINARY COURSES (MDC)							
		Credits					
Course code	Name of the course	Theory	Practical	Total			
KU1MDC BCH	BIOMOLECULES OF						
101	LIFE	3	-	3			
KU2MDC BCH	BASIC						
102	BIOCHEMISTRY	3	-	3			

KU1MDC BCH 101: BIOMOLECULES OF LIFE

S	Semester	Course Type	Course Level	Course Code	Credits	Total Hours
	I	MDC	Foundation	KU1MDC BCH 101	3	45

Learning	Approach (Hou	Marks Distribution			Duration of ESE		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	Duration of ESE (Hours)	
3	-	0	25	50	75	1.5	

Course Description

Biochemistry is a study focusing on the life processes of living organisms at both biological and chemical levels. The branch focuses on studying organisms' cells, thereby understanding their structures and various interactions. Biomolecules are the most essential organic molecules, which are involved in the maintenance and metabolic processes of living organisms. Biomolecules have a wide range of sizes and structures and perform a vast array of functions. The four major types of biomolecules are carbohydrates, lipids, nucleic acids, and proteins.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains

1	State the definition and branches of Biochemistry	
2	Understand basic concepts of structural organization and characterization of carbohydrates, proteins, lipids	
3	Understand the nature and functions of biomolecules	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		~	~	~
CO 3			~	~
CO 4				

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION				
	INTRODUCTION TO BIOCHEMISTRY					
1	1	Definition-Branches of Biochemistry				
	2 Biochemistry as a molecular logic of living organism. 3 Role and scope of Biochemistry					
	CARBO	RBOHYDRATES AND NUCLEIC ACIDS				
2	1	Definition and classification (without structure); Monosaccharides- occurrence, chemistry & functions				
	Disaccharides- occurrence and functions (without structure); sucrose, lactose, maltose					
	3	Polysaccharides: Definition and classification (without structure);				

		Occurrence and functions of cellulose, starch, glycogen.		
	4	Nucleic acid-Central dogma of molecular biology		
	5 Nucleotide and nucleoside			
	6	Watson and crick model of DNA		
	AMINO	O ACIDS AND PROTEINS	10	
3	1	Amino acids: Definition, Classification of amino acids based on charge and polarity, essential and non-essential amino acids.		
	2	Proteins: Definition-Peptides and peptide bond		
	3	Classification of proteins based on solubility, shape and function		
	LIPIDS		10	
4	1	Definition, Classification of fatty acids: Essential and non- essential fatty acids with examples. (without structure)		
	2	Definition and classification of lipids (without structure)		
	3	Biochemical functions of lipids.		
5		Teacher specific Module		
		Directions		

- 1. Jain, J. L. Fundamentals of biochemistry. S. Chand Publishing, 2004.
- 2. West, Edward Staunton, et al. *Textbook of biochemistry*. Oxford and IBH Publishing, 1974.
- 3. Nelson, David L., Albert L. Lehninger, and Michael M. Cox. *Lehninger principles of biochemistry*. Macmillan, 2008.

Reference Distribution:

Module	Unit	Reference No.
1	1	2
	2	3

	3	3
	1	1
	2	2
2	3	2
	4	2
	5	3
	6	3
	1	1
3	2	1
	3	2
	1	1
4	2	2
	3	2

Suggested Readings:

- 4. Devlin, Thomas M., ed. *Textbook of biochemistry with clinical correlations*. John Wiley & Sons, 2010.
- 5. Martin, David W., and Harold Anthony Harper. "Harper's review of biochemistry." (*No Title*) (1983).
- 6. Berg, Jeremy M., and John L. Tymoczko. *Stryer biochemie*. Vol. 8. Heidelberg: Springer Spektrum, 2018.

Assessment Rubrics:

Evaluati	on Type	Marks
End Sem	ester Evaluation	50
Continuo	ous Evaluation	25
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d) Student extension activity		5
Total		75

Employability for the Course:

- 1. Research Scientist
- 2. Biochemist
- 3. Pharmaceutical Scientist

- 4. Clinical Biochemist
- 5. Biotechnology Specialist
- 6. Forensic Scientist
- 7. Quality Control/Assurance Specialist
- 8. Educator/Professor
- 9. Science Writer/Communicator
- 10. Entrepreneur

KU2MDCBCH 102: BASIC BIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	MDC	Foundation	KU2MDC BCH 102	3	45

Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
3	-	0	25	50	75	1.5

Course description

Basic biochemistry covers the fundamental concepts of essential for understanding the molecular basis of life. The course would examine deeper into the chemical properties of water, including its role its role as a solvent and its unique behaviours due to hydrogen bonding. It would also explore the principles behind buffer solution, their application in biological system. Additionally, topics such as pH scale, and H- H equation provide a comprehensive understanding of buffers in biological system.

Course prerequisite: NIL

Course outcome

CO No.	Expected Outcome	Learning Domains
1.	Summarize the fundamental concept of biochemistry and its role in our world	
2.	Students should demonstrate a deep understanding of physical, chemical biological properties of water	
3.	Aware of acid base concept, measurement of acid and base using pH meter. And the concept of buffer	
4.	Attain the knowledge of solution preparation in biochemical	

assays	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2		~	>	>
CO 3			>	>
CO 4				

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	UNIT DESCRIPTION			
1	FUNDA	AMENTALS OF BIOCHEMISTRY	10		
	1.	1. Introduction to biochemistry- foundations of biochemistry (cellular, chemical, physical)			
	Branches of biochemistry – descriptive, dynamic biochemistry. And other branches				
		Role and scope of biochemistry – in medicine, agriculture, research, pharmaceutical, biotechnology			
2	WATE	R THE SOLVENT OF LIFE	10		
	1.	Water - structure of liquid water and ice			
		Physical properties of water. Ionization of water			
		Different interaction with water and biomolecules – hydrophilic, hydrophobic, amphipathic			

	Importance of water in biological system	
3	pH, BUFFER AND BIOLOGICAL IMPORTANCE	10
	Modern concepts of acids and bases – Lowry – Bronsted and Lewis concept. Strong and weak acids –	
	pH - pH scale, determination of pH using - pH meter,	
	pH - pH scale, determination of pH using - pH meter, pH paper	
	Buffer – definition, types of buffers. pH of buffers - Henderson Hassel balch equation	
	Importance of buffer in biological systems	
4	SOLUTION	10
	Solution - true solution, colloidal solution, suspension.	
	Application of colloids	
	Application of colloids Normality, molarity, molality, percentage solution -	
	Application of colloids Normality, molarity, molality, percentage solution - simple numerical problem	
5	Application of colloids Normality, molarity, molality, percentage solution - simple numerical problem Fundamental principle of diffusion, osmosis	5

- 1. Jain, J. L. Fundamentals of biochemistry. S. Chand Publishing, 2004.
- 2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. *Fundamentals of biochemistry: life at the molecular level*. John Wiley & Sons, 2016.
- 3. Fisher, Matthew. "Lehninger principles of biochemistry, ; by David L. Nelson and Michael M. Cox." *The Chemical Educator* 6 (2001): 69-70.
- 4. Satyanarayana, U., and U. Chakrapani. *Biochemistry, (Updated and Revised Edition)-E-Book.* Elsevier India, 2020.
- 5. Kellum, John A., and Paul WG Elbers. Stewart's textbook of acid-base. Lulu. com, 2009.
- 6. Deb, A. C. "Fundamentals of Biochemistry. 2006, 8 [sup] th Edition." *New Central Book Agency* (*P*) *Ltd: Kolkata, India*: 85-6.

Reference Distribution

MODULE	UNIT	REFERENCE NO.
	1	3
	2	2
1	3	1
	4	1
	1	1
	2	1
2	3	1
	4	1
	1	5
	2	1
3	3	4
	4	4
	1	4
	2	3
4	3	3
	4	3

Suggested reading:

- 7. Silberberg, Martin Stuart. "Principles of general chemistry." (No Title) (2007).
- 8. Brown, Theodore Lawrence. Chemistry: the central science. Pearson Education, 2009.

Assessment Rubrics

Evaluati	on Type	Marks
End S	Semester Evaluation	
Silberber	g, Martin S. Principles	50
of Genera	al Chemistry	
Continuo	us Evaluation	25
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Student extension	5
u)	activity	3
Total		75

Employability of the course

- 1. Biochemical companies
- 2. Research and development

3. Teaching

Semester	Course code	Name of the course	Cr	edits	
			Theory	Practical	Total
I	KU 1 DSC BCH 102	FUNDAMENTALS OF	4	-	4
		BIOCHEMISTRY I			
I	KU 1DSC BCH 103	BASIC ENDOCRINOLOGY	4	-	4
II	KU 2 DSC BCH 105	FUNDAMENTALS OF	4	-	4
		BIOCHEMISTRY II			
II	KU 2 DSC BCH 106	BASIC PLANT BIOCHEMISTRY			
II	KU 2 DSC BCH 107	BIOCHEMISTRY OF	4	-	4
		BIOLOGICAL MOLECULES			
III	KU 3 DSC BCH 203	FUNDAMENTALS OF	4	-	4
		BIOCHEMISTRY III			
III	KU 3 DSCBCH 204	BIOCHEMISTRY OF HEALTH &	3	1	4
		NUTRITION			

KU1DSCBCH 102: FUNDAMENTALS OF BIOCHEMISTRY I

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	Foundation	KU1DSC BCH102	4	60

Learning Approach (Hours/ Week)		Marks Distribution			Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course description

Basic biochemistry covers the fundamental concepts of essential for understanding the molecular basis of life. The course would examine deeper into the chemical properties of water, including its role its role as a solvent and its unique behaviours due to hydrogen bonding. It would also explore the principles behind buffer solution, their application in biological system. Additionally, topics such as pH scale, and H- H equation

Course prerequisite: NIL

Course outcome

CO No.	Expected Outcome	Learning Domains
1.	Summarize the fundamental concept of biochemistry	
	and its role in our world	
2.	Students should demonstrate a deep understanding of	
	physical, chemical biological properties of water	
3.	Aware of acid base concept, measurement of acid	
	and base using pH meter. And the concept of buffer	
4.	Attain the knowledge of solution preparation in	
	biochemical assays. Attain the knowledge of bonds	
	present in biomolecules.	

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2		>		
CO 3		>		
CO 4		~		

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
1	BASICS	S OF BIOCHEMISTRY	10
	1.	Introduction to biochemistry- foundations of biochemistry	
		(cellular, chemical, physical)	
	2	Thermodynamics – First law -Basic concept of entropy,	
		Second law. Standard free energy change and its relation to	
		equilibrium constant	
	3	Branches of biochemistry – descriptive, dynamic biochemistry.	
		And other branches	
	4	Role and scope of biochemistry – in medicine, agriculture,	
		research, pharmaceutical, biotechnology	
2	WATE	R IN BIOLOGICAL SYSTEM	15
	1	Water - structure of liquid water and ice	
	2	Physical properties of water. Ionization of water	
	3	Different interaction with water and biomolecules –	
		hydrophilic, hydrophobic, amphipathic	
	4	Importance of water in biological system	

3	CONCI	EPT OF ACIDS AND BASES	15
	1	Modern concepts of acids and bases – Lowry – Bronsted and	
		Lewis concept. Strong and weak acids – ionization constant Ka	
		and pKa of weak acids	
	2	pH - pH scale, determination of pH using - pH meter, pH paper	
	3	Buffer – definition, types of buffers. pH of buffers - Henderson	
		Hassel balch equation	
	4	Importance of buffer in biological systems	
4	SOLUT	TIONS	15
	1	Solution - true solution, colloidal solution, suspension.	
		Application of colloids	
	2	Normality, molarity, molality, percentage solution	
	3	Osmosis - importance	
	4	Bonds in biomolecules – covalent bond, ionic bond,	
		electrostatic attraction	
5		Teacher specific Module	5
		Directions	

- 1. Jain, J. L. Fundamentals of biochemistry. S. Chand Publishing, 2004.
- 2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. *Fundamentals of biochemistry: life at the molecular level.* John Wiley & Sons, 2016.
- 3. Fisher, Matthew. "Lehninger principles of biochemistry, ; by David L. Nelson and Michael M. Cox." *The Chemical Educator* 6 (2001): 69-70.
- 4. Satyanarayana, U., and U. Chakrapani. *Biochemistry, (Updated and Revised Edition)-E-Book.* Elsevier India, 2020.

Reference Distribution

MODULE	UNIT	REFERENCE NO.
	1	3
	2	2
1	3	1
	4	1
	1	1
	2	1
2	3	1
	4	1
	1	5
	2	1
3	3	4
	4	4
	1	4
	2	3
4	3	3

1	3
+)

Suggested readings:

- 1. Silberberg, Martin Stuart. "Principles of general chemistry." (No Title) (2007).
- 2. Brown, Theodore Lawrence. Chemistry: the central science. Pearson Education, 2009.

Assessment Rubrics

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Book review/Debate	5
d)	Viva	5
	Total	100

Employability of the course

- 1. Biochemical companies
- **2.** Research and development

KU1DSC BCH103: BASIC ENDOCRINOLOGY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
I	DSC	Foundation	KU1DSCBCH103	4	60

Learning	Approach (Hou	rs/ Week)	Ma	rks Distribu	ıtion	Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Endocrinology is a branch of biology and medicine that deals with the endocrine system, which includes glands that secrete hormones directly into the bloodstream. These hormones act as chemical messengers, regulating various bodily functions such as metabolism, growth and **166** | Page

development, tissue function, sexual function, reproduction, sleep, and mood. The field of endocrinology is interdisciplinary, drawing knowledge from biology, biochemistry, physiology, and clinical medicine. students typically study Endocrine Glands and Hormones, Hormone Regulation, How hormones affect specific organs and systems in the body, such as metabolism, reproduction, growth, and stress response, Endocrine Disorders, Discussion of recent research findings and emerging therapies in endocrinology, Practical applications of endocrinology in diagnosing and managing various medical conditions related to hormone imbalances.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	To understand about scope of Endocrinology, endocrine system,	
	hormones and second messenger system.	
2	To understand hormones of Hypothalamus, pineal gland, Thyroid	
	gland, adrenal gland, pancreas, hormones involved in calcium	
	metabolism and neurohormones.	
3	To understand hormones of female and male reproductive system	
4	To understand various endocrinopathies.	

^{*}Remember I, Understand (U), Apply (A), Analyse (An), Evaluate I, Create (C

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		
CO 2		>		
CO 3		>		
CO 4		>		
CO 5				~

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOU
			RS

15
_
15
ıl
15
S
es

5	Teacher Specific Module	5
	Directions	

- 1. Kronenberg, Henry M. Williams Textbook of Endocrinology E-Book. Elsevier Health Sciences, 2007.
- 2. William Textbook of Endocrinology, 11th ed. Saunders Elsevier, 2008.
- 3. Bolander, F. F. Molecular Endocrinology, III ed. Academic Press, 2004.
- 4. Cox, Nelson. Leininger's Principle of Biochemistry, 3rd ed. MacMillan Worth Publishers, 2000
- 5. Hadely, Mac E. Endocrinology, 5th ed. Pearson Education, 2000.

Reference Distribution:

Module	Unit	Reference No.
	1	4
1	2	1
	3	3
	1	1
2	2	1
4	3	1
	4	1
	1	1
3	2	1
	3	1
	1	4
4	2	4
	3	4

Suggested Readings:

6. Sembulingum, K., and Prema Sembulingum. Essentials of Medical Physiology, 6th edition, Jaypee Brothers Medical Publications, New Delhi, 2012.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Book review/Debate	5

d)	Viva	5
	Total	100

Employability for the Course:

- 1. Diagnostic laboratory
- 2. Research and Development
- 3. Teaching
- 4. Drug industries.

KU2DSC BCH105: FUNDAMENTALS OF BIOCHEMISTRY II

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	Foundation	KU2DSC BCH105	4	60

Learning Approach (Hours/ Week)		proach (Hours/ Week) Marks Distribution		Duration of		
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course description

This course provides a foundational understanding of enzymology and its significance. Students learn about the types, biosynthesis, and biological functions of both types of hormones. A course on Bioenergetics and experimental techniques used to study biomolecules. A course on Carbohydrate, Lipid, and amino acid metabolism explore the biosynthesis, regulation and importance in biological system.

Course prerequisite: NIL

Course outcome

CO No.	Expected Outcome	Learning Domains
1.	Understand the carbohydrate metabolism.	
2.	Understand the amino acid metabolism.	
3.	Understand the lipid metabolism	
4.	Understand the nucleicacid metabolism.	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

PSO 1	PSO 2	PSO 3	PSO 4

CO 1	~	
CO 2	>	
CO 3	>	
CO 4	>	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	META	BOLIC PATHWAY FOR CARBOHYDRATES	10
1	1	Metabolism – definition, major enzymes, reaction	
		steps, energetics and regulation involved in –	
		glycolysis, gluconeogenesis, glycogen metabolism.	
	2	Definition, major enzymes, reaction steps, energetics	
		and regulation involved in – TCA cycle	
	3	Oxidative phosphorylation and ETC.	
	META	BOLIC PATHWAY FOR AMINOACIDS	15
2	1	Metabolism of amino acids- transamination, oxidative	
		deamination,	
	2	Urea cycle and regulation	
	3	Metabolism of non-essential amino acids (without	
		structure)	
3	META:	BOLIC PATHWAY FOR LIPIDS	15
	1	Transport and activation of fatty acid	
	2	Beta oxidation and major enzymes, reaction steps,	
		energetics and regulation involved in – beta	
		oxidation	
	3	Denovo synthesis of fatty acids	
			15
4	META:	BOLIC PATHWAY FOR NUCLEIC ACIDS	
	1	Denovo synthesis of purine and pyrimidine	
		nucleotide and its regulation.	
	2	Salvage pathway and its significance	
	3	Catabolism of nucleic acids	
5		Teacher specific Module	5
		Directions	

Essential Reading:

1. Jain, J. L. Fundamentals of biochemistry. S. Chand Publishing, 2004.

- 2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. *Fundamentals of biochemistry: life at the molecular level.* John Wiley & Sons, 2016.
- 3. Fisher, Matthew. "Lehninger principles of biochemistry, ; by David L. Nelson and Michael M. Cox." *The Chemical Educator* 6 (2001): 69-70.
- 4. Satyanarayana, U., and U. Chakrapani. *Biochemistry, (Updated and Revised Edition)-E-Book.* Elsevier India, 2020.
- 5. Kellum, John A., and Paul WG Elbers. Stewart's textbook of acid-base. Lulu. com, 2009.
- 6. Deb, A. C. "Fundamentals of Biochemistry. 2006, 8 [sup] th Edition." *New Central Book Agency (P) Ltd: Kolkata, India*: 85-6.
- 7. Chatterjea, M. N., and Rana Shinde. Textbook of medical biochemistry. Wife Goes On, 2011.

Reference Distribution

MODULE	UNIT	REFERENCE NO.
	1	1
	2	2
1	3	3
	1	6
	2	6
2	3	4
	1	5
	2	7
3	3	7
	1	4
	2	3
4	3	1

Suggested readings

- 8.Delvin, T.M. Textbook of Biochemistry with Clinical Correlation. Wiley & Sons, 2011.
- 9. Gibson, Rosalind. Principles of Nutritional Assessment. Oxford University Press, 2005.
- 10. Satyanarayana, U., and U. Chakrapani. *Biochemistry, (Updated and Revised Edition)-E-Book.* Elsevier India, 2020.

Assessment Rubrics

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	us Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Book review/Debate	5

d)	Viva	5
	Total	100

KU2DSCBCH106: BASIC PLANTBIOCHEMISTRY

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
II	DSC	Foundation	KU2DSCBCH106	4	60

Learning Approach (Hours/ Week)			` '			Duration of
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course Description:

Plant biochemistry course typically aim to understand biochemical processes and molecular mechanisms underlying plant growth, development and metabolism. It explores the metabolic pathways involved in plant growth and development, including photosynthesis, respiration, biosynthesis of phytohormones and secondary metabolites.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	To know the plant cell organelles and, locate its parts along with functions and mechanism of photosynthesis	
2	In-depth knowledge of different phytohormones and their functions	
3	Classify and isolate different secondary metabolites and stress physiology	
4	Analysis of qualitative and quantitative determination of phytochemicals	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		>		

CO 2	~	
CO 3	~	
CO 4		>

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	INTROI	DUCTION TO PLANT CELL AND PHOTOSYNTHESIS	10
	1	Plant cell organelles Plastids–types, structure, functions Cell wall–properties, plasmodesmata, Glyoxysome	
1	2	Plant tissues-vascular tissues, meristem and permeant tissues	
	3	Photosynthesis - PSI, PS II, LHC, ATP Synthase Light reaction and dark reaction, photophosphorylation	
	4	Photo respiration, C3, C4, CAM pathways, glyoxylate cycle	
	PLANT	HORMONES	15
	1	Biosynthesis and physiological functions of auxins, GA,	
2	2	Biosynthesis and physiological functions of Cytokinin, ABA, Ethylene	
	3	Biosynthesis and physiological functions of Polyamines, brassino steroids	
	4	Biosynthesis and physiological functions of Jasmonic acid, salicylic acid	
	SECON	DARY METABOLITES	15
3	1	Classification, isolation and characterization of alkaloids, phenols, terpenoids and flavonoids.	
	2	Biosynthetic pathways of alkaloids, phenols, terpenoids and flavonoids.	
	3	Applications of alkaloids, phenols, terpenoids and flavonoids.	
	PLANT	STRESS	15
4	1	Plant stress—The stress concept in plants.	
	2	Biotic stresses – allelopathic substance, insects and disease.	
	3	Abiotic stresses- salinity, floods, drought	

5	Teacher Specific Module	5
	Directions	

- 1. Taiz, Lincoln, and Eduardo Zeiger. Plant Physiology and Development. Sixth Edition, Sinauer Associates, Inc., 2010.
- 2. Buchanan, Bob B., Wilhelm Gruissem, and Russell L. Jones. Biochemistry & Molecular Biology of Plants. Second Edition, John Wiley & Sons, Ltd, 2015.
- 3. Goodwin, T.W., and E.I. Mercer. Introduction to Plant Biochemistry. Pergamon Press, Oxford, 1983.
- 4. Hopkins, W.G., and Hinder, N.P.A. Introduction to Plant Physiology. 3rd Edition, John Wiley & Sons Inc., New York, 2004.
- 5. Mukherji, S., and Gosh, A.K. Plant Physiology. New Central Book Agency, Kolkata, 2005 **Reference Distribution:**

Module	Unit	Reference No.
	1	1
1	2	1
1	3	1
	4	1
	1	2
2	2	1
	3	3
	4	1
	1	1
3	2	1
3	3	6
	4	6
	1	7
	2	7
	3	7
4	4	7
	5	7
	6	7
	7	7

Suggested Readings:

- 1. Gupta, Dharmendra K., and Jose Manuel Palma. Plant Growth and Stress Physiology. Springer.
- 2. Bala, Manju, Sunita Gupta, N. K. Gupta, and Manjeet Kaur Sangha. Practicals in Plant Physiology and Biochemistry. Scientific Publications.

Assessment Rubrics:

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuous Evaluation		30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Book review/Debate	5
d)	Viva	5
	Total	100

Employability for the Course:

- 1. Biotechnology companies
- 2. Research and Development
- 3. Teaching
- 4. Biological technicians

KU 2DSC BCH 107 : BIOCHEMISTRY OF BIOLOGICAL MOLECULES

Semester	Course type	Course level	Course code	Credits	Total hours
II	DSC (Foundation	KU2DSC BCH 107	4	4
	MINOR)				

Learning approach (hours/ week)			Mark	ks distributi	on	Duration of ESE
Lecture	Practical/	Tutorial	CE	ESE	Total	(hours)
	internship					
4	0	0	30	70	100	2

Course description.

Biochemistry is a study focusing on the life processes of living organisms at both biological and chemical levels. The branch focuses on studying organisms' cells, thereby understanding their structures and various interactions. Biomolecules are the most essential organic molecules, which are involved in the maintenance and metabolic processes of living organisms. Biomolecules have a wide range of sizes and structures and perform a vast array of functions. The four major types of biomolecules are carbohydrates, lipids, nucleic acids, and proteins.

Course prerequisite: NIL

Course outcome

CO No.	Expected Outcome	Learning Domains
1	To understand the classification, structure, and function of carbohydrates.	R,U
2	To understand the classification, structure, and function of aminoacids and proteins.	R,U
3	To understand the classification, structure, and function of lipids.	R,U
4	To understand the classification, structure, and function of nucleic acids	R,U

*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	~			
CO 2	~			
CO 3	~			
CO 4	✓			

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	CARBOHY	DRATE	10
1	1	Definition and classification. Monosaccharides-, occurrence, chemistry & functions.	
	2	Isomers of monosaccharides- epimers, anomers, mutarotation	
	3	Disaccharides- occurrence, and functions of sucrose, lactose, maltose, isomaltose and cellobiose.	
	4	Polysaccharides: occurrence and functions of cellulose, starch, glycogen, Hyaluronic acid, chondroitin sulfate, heparin.	
	AMINOAC	CIDS AND PROTEINS	15
2	1	Amino acids: Definition, structure three letter and single letter abbreviations of amino acids. Classification of amino acids based on charge and polarity, essential and non-essential amino acids.	
	2	Proteins: Peptides- Formation of peptide bond.	

			-	
	3	Elementary study of primary, second and quaternary structure of pro Haemoglobin and Myoglobin).		
	4	Forces stabilizing the structure of prote	ein	
3	LIPIDS			
	1	Definition, classification-Simple, complexity derived, biochemical functions of lipid		
	2	Physical and chemical properties of fat	tty Acids	
	3	Test for Fats and Oils: saponification number, acid number, rancidity of fats and iodine number-their applications		
4 Importance of Essential Fatty acids				
4	NUCLEIC ACIDS		15	
	1	Nucleic acids: Nitrogenous Base, sugar and phosphate group. Nucl nucleotides, stability and format Phosphodiester linkages.	leosides,	
	2	Watson Crick model of DNA		
	3	Polymorphism of DNA (A, C, D & Z DNA)		
	4	Types of RNA (mRNA,rRNA & tRNA	A)	
	1			
5		Teacher Specific Module 5		

5	Teacher Specific Module	5
	Directions	

- 1.J L Jain Textbook of biochemistry, S. Chand and company Ltd. New Delhi 2007
- 2.E.S. West, W.R. Todd et al., Textbook of Biochemistry 4th edition. Oxford and IBH Publishing. 1974.
- 3. Nelson, David L. (David Lee), 1942-. Lehninger Principles of Biochemistry. New York: W.H. Freeman, 2005.
- 4. Standard Methods of Biochemical Analysis, S. K. Thimmaiah (ed),

Kalyani Publishers, Ludhiana.

Reference Distribution

MODULE	UNIT	REFERENCE NO.
	1	1
	2	1
1	3	1
	4	1
	1	2
	2	2
2	3	2
	4	2
	1	3
	2	3
3	3	3
	4	3
	1	4
	2	4
4	3	4
	4	4

Suggested readings

- 1. Textbook of Biochemistry with clinical correlation. Delvin , T.M (2011) , Wiley & Sons
- 2.Principles of Nutritional Assessment . Rosalind Gibson (2005), Oxford University Press
- $3. Medical\ Laboratory\ Technology$, procedure Manual for Routine Diagnostic Tests- vol. 2

Assessment

Rubrics.

THEORY

EVALUATION TYPE	MARKS
1.End Semester Evaluation (Theory)	70
2.Continuous Evaluation (Theory)	30
Test Paper	10
Assignment	5
Seminar	5
Book/Article Review	5
Viva	5
TOTAL	100

Empolyability

1.Biochemist 2.R&D

3,Teaching

KU3DSC BCH203: FUNDAMENTALS OF BIOCHEMISTRY III

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	Intermediate	KU3DSCBCH203	4	60

Learning Approach (Hours/ Week)		Mar	ks Distribut	ion	Duration of	
Lecture	Practical/ Internship	Tutorial	CE	ESE	Total	ESE (Hours)
4	0	0	30	70	100	2

Course description

This course provides a foundational understanding of enzymology and its significance. Bioenergetics mainly provides the energy production, utilization at different forms as heat. Students learn about the types, biosynthesis, and biological functions of both plant and animal hormones. Biochemical techniques used to study the biomolecules at different level.

Course prerequisite: NIL

Course outcome

CO No.	Expected Outcome	Learning Domains
5.	Understand the basic features of enzymes, different	
	classes of enzymes, enzyme activity and application	
	of enzymes	
6.	Students can attain the knowledge of energetic in a	
	biological system.	
7.	Attain the knowledge about animal and plant	
	hormones in their growth and development	
8.	Analyze the biomolecules using different	
	biochemical techniques.	

^{*}Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C)

PSO 1	PSO 2	PSO 3	PSO 4

CO 1	~	
CO 2	>	
CO 3	>	
CO 4	>	

COURSE CONTENTS

Contents for Classroom Transaction

MODULE	UNIT	DESCRIPTION	HOURS
	ENZYM	MES I	10
1	1	Introduction to enzymes- apo enzyme, holo enzyme,	
		cofactors, coenzyme.	
	2	IUB classification and nomenclature of enzymes.	
	3	Biological role of enzymes. Diagnostic and therapeutic	
		enzymes.	
	ENZYM	MES II	15
2	1	Enzyme kinetics. Energy mechanics of enzymatic	
		reaction.	
	2	MM equation, inhibition of enzyme reaction.	
	3	Allosteric enzyme; study of activation of zymogen form	
		of enzyme with e.g. Chymotrypsin	
3	BIOENERGETICS		15
	1	Principles of bioenergetics and thermodynamics – first	
		and second law.	
	2	Entropy – standard free energy change and equilibrium	
		constant	
	3	Free energy change in living system	
	4	Phosphorylated compound and thioesters – ATP	
4	BIOCH	EMICAL TECHNIQUES.	15
	1	Separation techniques- homogenization, centrifugation	
	2	Chromatography – adsorption and partition (TLC, paper,	
		GC, HPLC)	
	3	Electrophoresis- gel electrophoresis and paper	
		electrophoresis.	
	4	colorimeter & spectrophotometer	
5			5
3		Teacher specific Module	
		Directions	

Essential Readings:

1. Voet, J.G., Voet, D. Biochemistry. John Wiley & Sons, 2021.

- 2. Nelson, et al. Lehninger Principles of Biochemistry. W. H. Freeman, 2008
- 3. Upadhyay. Biophysical Chemistry.
- 4. Palmer. Enzymes.
- 5. Chatterjee. Medical Biochemistry.
- 6. Jain, et al. Fundamentals of Biochemistry. 2022.

Reference Distribution

MODULE	UNIT	REFERENCE NO.
	1	4
	2	4
1	3	4
	1	1
	2	2
2	3	2
	1	1
	2	1
3	3	2
	4	7
	1	3
	2	3
4	3	3
	4	3

Suggested readings:

- 7. Delvin, T.M. Textbook of Biochemistry with Clinical Correlation. Wiley & Sons, 2011.
- 8. Gibson, Rosalind. Principles of Nutritional Assessment. Oxford University Press, 2005.
- 9. Medical Laboratory Technology: Procedure Manual for Routine Diagnostic Tests Vol. 2.
- 10. Sreekumari, S. Biophysical Chemistry.

Assessment Rubrics

E	valuation Type	Marks
End Sem	ester Evaluation	70
Continuo	ous Evaluation	30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Book review/Debate	5
d) Viva		5
	Total	100

KU3DSCBCH 204: BIOCHEMISTRY OF HEALTH & NUTRITION

Semester	Course Type	Course Level	Course Code	Credits	Total Hours
III	DSC	Intermediate	KU3DSCBCH204	4	60

Learning	g Approach (Hou	Mar	ks Distribut	ion	Duration of	
Lecture	Practical/ Internship	Tutorial		ESE	Total	ESE (Hours)
4	0	-	30	70	100	2

Course Description:

Nutritional biochemistry courses focus on nutrients. Nutrients are chemical substances required by the body to sustain basic functions and are optimally obtained by eating a balanced diet. There are six major classes of nutrients essential for human health: carbohydrates, lipids, proteins, vitamins, minerals, and water. Carbohydrates, lipids, and proteins are considered macronutrients and serve as a source of energy. Vitamins and minerals are considered micronutrients and play essential roles in metabolism. Vitamins are organic micronutrients classified as either water-soluble or fat-soluble. Minerals are inorganic micronutrients. Minerals can classify as macro minerals and microminerals.

Course Prerequisite: NIL

Course Outcomes:

CO No.	Expected Outcome	Learning Domains
1	Understand the concept of nutrition & health.	
2	Create knowledge of different types of carbohydrates, their importance, sources, functions.	
3	Analyse the nutritional aspects of proteins	
4	To understand the nutritional aspects of minerals and vitamins	
5	To create the knowledge about to identify what foods good sources of what nutrients.	

^{*}Remember ©, Understand (U), Apply (A), Analyse (An), Evaluate ©, Create (C)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1		/		
CO 2		/		
CO 3				

CO 4	~	
CO 5		

COURSE CONTENTS

Contents for Classroom Transaction:

MODULE	UNIT	DESCRIPTION	HOURS
	BASIC	CS OF NUTRITION	15
	1	Concepts of macro and micro nutrients.	
1	2	Physiological fuel value and Respiratory quotient	
	3	High and low-calorie diets, Balanced diet	
	4	Recommended dietary allowance (RDA)Basal metabolic rate (BMR) and factors affecting BMR	
	NUTRI LIPIDS	TIONAL ASPECTS OF THE CARBOHYDRATES AND	10
2	1	Nutritional aspects of the carbohydrates-(Different dietary types, source deficiency)	
	2	Special role of the non-starch polysaccharides.	
	3	Nutritional aspects of the lipids- Different dietary types	
	4	Functions of lipids, Essential fatty acids – sources and functions	-
		TIONAL SIGNIFICANCE OF PROTEINS, MINERALS ITAMINS	10
3	1	Nutritional classification of amino acids and proteins, Essential amino acids – sources and functions	
3	2	Protein Energy Malnutrition-Kwashiorkor and Marasmus.	
	3	Dietary Macro elements: Ca, P, Mg, Na& K and Dietary Micro elements: Iron, Iodine, Zinc, Copper –sources, functions and deficiencies	-
4	4	Nutritional significance- fat soluble and water-soluble vitamins- source, functions and deficiency diseases.	

		NUTRITIONAL DISORDERS	10
	1	Nutritional management of diabetes mellitus	
	2	Nutritional management of obesity	
	3	Nutrition for infants, children, pregnant and lactating women	
	4	Importance of nutrition under stress conditions.	
	5	Sports nutrition	
	Teache	r Specific Module: Practicals	30
	1	Qualitative analysis of Carbohydrates-Glucose, Fructose, Sucrose, Lactose, Maltose	
	2	Qualitative analysis of amino acids-Tyrosine, Arginine, Tryptophan	
5	3	Qualitative analysis of Peptone	
	4	Qualitative analysis of Casein	
	5	Qualitative analysis of Albumin	
	6	Estimation of total protein	
	7	Estimation of reducing sugar	

- 8. Akoh, Casimir C. Food Lipids: Chemistry, Nutrition, and Biotechnology. 4th ed., CRC Press Taylor & Francis Group, 2016.
- 9. Mann, Jim, and A. Stewart Truswell. Essentials of Human Nutrition. 2nd ed., Oxford University Press Inc., 2002.
- 10. Rodwell, Victor, et al. Harper's Illustrated Biochemistry. 31st ed., Tata McGrawHill Education, 2018.
- 11. Underwood, E. Trace Elements in Human and Animal Nutrition. 4th ed., Academic Press, 1977.
- 12. Bamji, M.S., Kamala Krishnaswami, and G.N.V. Brahmam. The Book of Human Nutrition. 4th ed., Oxford & IBH Publishing, 2011.
- 13. Swaminathan, M.S. Essentials of Food and Nutrition. Vol. I and II, Ganesh & Co., 1974.
- 14. Trueman, Patricia. Nutritional Biochemistry. Mjp Publishers, 2007.

Reference Distribution:

Module	Unit	Reference No.
1	1	7

	2	7
	3	2
	4	2
	1	3
2	2	6
4	3	5
	4	2
	1	2 2
3	2	2
3	3	2
	4	2
	1	9
	2	10
	3	10
	4	12
4	5	12
7	6	12
	7	12
	8	8
	9	8
	10	8

Suggested Readings:

- 8. Mahan, L.K., and Raymond J. Shanahan. Krause's Food and Nutrition Care Process. 2012.
- 9. Raymond, J. Elsevier's Publications. ISBN-978-1-4377-2233-8.
- 10. The vitamins, Fundamental aspects in Nutrition and Health (2008) 1 G.F.
- 11. Coombs Jr. Elsevier's Publications. ISBN-13- 978-0-12- 183493-7.
- 12. Gibson, Rosalind. Principles of Nutritional Assessment. University Press, 2005.

Assessment Rubrics

Evaluation Type		Marks
End Semester Evaluation		70
Continuous Evaluation		30
a)	Test Paper	10
b)	Assignment	5
c)	Seminar	5
d)	Book review/Debate	5
d)	Viva	5
Total		100

Employability for the Course:

- 7. Food industries
- 8. Research and Development
- 9. Teaching
- 10. Dietitians
- 11. Entrepreneurship
- 12. Food testing lab- technicians